Skip to main content
Log in

Localization measures in the time-scale setting

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Wavelet (or continuous wavelet) transform is superior to the Fourier transform and the windowed (or short-time Fourier) transform because of its ability to measure the time–frequency variations in a signal at different time–frequency resolutions. However, the uncertainty principles in Fourier analysis set a limit to the maximal time–frequency resolution. We present some forms of uncertainty principles for functions that are \(\varepsilon \)-concentrated in a given region within the time–frequency plane involving particularly localization operators. Moreover we show how the eigenfunctions of such localization operators are maximally time–frequency-concentrated in the region of interest and we will use it to approximate such \(\varepsilon \)-concentrated functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W.O., Berthier, A.M.: On support properties of \(L^{p}\) -functions and their Fourier transforms. J. Funct. Anal. 24, 258–267 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daubechies, I.: Ten Lectures on Wavelets, Vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Google Scholar 

  4. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies, I., Paul, T.: Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations. Inverse Probl. 4, 661–680 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faris, W.G.: Inequalities and uncertainty inequalities. J. Math. Phys. 19, 461–466 (1978)

    Article  Google Scholar 

  8. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghobber, S.: Some results on wavelet scalograms. Int. J. Wavelets Multiresolut. Inf. Process. (2017). doi:10.1142/S0219691317500199

    MathSciNet  MATH  Google Scholar 

  10. Hamadi, N.B., Lamouchi, H.: Shapiro’s uncertainty principle and localization operators associated to the continuous wavelet transform. J. Pseudo-Differ. Oper. Appl. (2016). doi:10.1007/s11868-016-0175-7

    Google Scholar 

  11. He, Z., Wong, M.W.: Localization operators associated to square integrable group representations. Panam. Math. J. 6, 93–104 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Landau, H.J.: On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels. J. Anal. Math. 28, 335–357 (1975)

    Article  MATH  Google Scholar 

  13. Liu, Y., Mohammed, A., Wong, M.W.: Wavelet multipliers on \(L^p({\mathbb{R}}^n)\). Proc. Am. Math. Soc. 136, 1009–1018 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Price, J.F.: Inequalities and local uncertainty principles. J. Math. Phys. 24, 1711–1714 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Price, J.F.: Sharp local uncertainty principles. Studia Math. 85, 37–45 (1987)

    MATH  Google Scholar 

  16. Riesz, F., Szőkefalvi-Nagy, B.: Functional Analysis. Frederick Ungar Publishing Co., New York (1955)

    Google Scholar 

  17. Singer, P.: Uncertainty inequalities for the continuous wavelet transform. IEEE Trans. Inf. Theory 45, 1039–1042 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Velasco, G.A.M., Dörfler, M.: Sampling time-frequency localized functions and constructing localized time-frequency frames. Eur. J. Appl. Math. (2016). doi:10.1017/S095679251600053X

    Google Scholar 

  19. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Wong, M.W.: \(L^p\) boundedness of localization operators associated to left regular representations. Proc. Am. Math. Soc. 130, 2911–2919 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wong, M.W.: Wavelet Transforms and Localization Operators. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saifallah Ghobber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobber, S. Localization measures in the time-scale setting. J. Pseudo-Differ. Oper. Appl. 8, 389–410 (2017). https://doi.org/10.1007/s11868-017-0195-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-017-0195-y

Keywords

Mathematics Subject Classification

Navigation