Skip to main content
Log in

Application of Ultrasonic Technique for Cure Monitoring of Epoxy/Graphene Oxide–Carbon Nanotubes Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A non-invasive ultrasonic transmission method was applied to on-line monitor the curing behavior of the nanocomposites based on epoxy matrix. Effects of dispersion and interfacial adhesion of the nanofiller on high frequency dynamic mechanical properties during curing process of the nanocomposites were discussed. The typical nanofillers, multi-wall carbon nanotubes (p-MWCNTs) were selected, which were doped with graphene oxides (GOs), and dispersed in epoxy resin. By measuring the velocity and attenuation coefficient of longitudinal ultrasonic waves throughout the entire curing cycle, the longitudinal storage modulus and loss tangent of the epoxy nanocomposites were obtained. And the curing kinetics of the epoxy matrix nanocomposites was analyzed based on the Hsich non-equilibrium fluctuation theory. The results proved that enhanced dispersion and interfacial bonding of the GO-MWCNTs with epoxy improved dynamic mechanical properties of the epoxy matrix nanocomposites, while made curing process accelerated. The proposed ultrasonic monitoring method could accurately evaluate the curing process of epoxy-matrix nanocomposites. In conclusion, this research offered a practical effective measurement method for monitoring of curing process of the thermosetting resin matrix nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author on reasonable request.

References

  1. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  2. Ogbonna, V.E., Popoola, P.I., Popoola, O.M., Adeosun, S.O.: A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement. J. Thermoplast. Compos. Mater. 36(2), 836–865 (2023). https://doi.org/10.1177/08927057211007904

    Article  CAS  Google Scholar 

  3. Demircan, G., Kisa, M., Ozen, M., Aktas, B.: Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran. Polym. J. 29(3), 253–264 (2020). https://doi.org/10.1007/s13726-020-00790-z

    Article  CAS  Google Scholar 

  4. Ozen, M., Demircan, G., Kisa, M., Acikgoz, A., Ceyhan, G., Işıker, Y.: Thermal properties of surface-modified nano-Al2O3/Kevlar fiber/epoxy composites. Mater. Chem. Phys. 278, 125689 (2022). https://doi.org/10.1016/j.matchemphys.2021.125689

  5. Liu, J., Li, Y., Yin, B., Li, S., Chen, P.: Preparation and characterization of novel nano-Al2O3/SiO2-based composites for energy-saving. Int. J. Appl. Ceram. Technol. 20(1), 371–379 (2023). https://doi.org/10.1111/ijac.14222

    Article  CAS  Google Scholar 

  6. Demircan, G., Ozen, M., Kisa, M., Acikgoz, A., Işıker, Y.: The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Eng. 269, 113589 (2023). https://doi.org/10.1016/j.oceaneng.2022.113589.

  7. Demircan, G., Kisa, M., Ozen, M., Acikgoz, A.: Quasi-Static Penetration Behavior of Glass-Fiber-Reinforced Epoxy Nanocomposites. Mech. Compos. Mater. 57(4), 503–516 (2021). https://doi.org/10.1007/s11029-021-09973-y

    Article  ADS  CAS  Google Scholar 

  8. Killedar, L.S., Vernekar, P.R., Shanbhag, M.M., Shetti, N.P., Malladi, R.S., Veerapur, R.S., Reddy, K.R.: Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications. J. Mol. Liq. 351, 118583 (2022). https://doi.org/10.1016/j.molliq.2022.118583

  9. Pełech, I., Pełech, R., Narkiewicz, U., Kaczmarek, A., Guskos, N., Żołnierkiewicz, G., Typek, J., Berczyński P.: Magnetic and electrical properties of carbon nanotube/epoxy composites. Mater. Sci. Eng. B 254, 114507 (2020). https://doi.org/10.1016/j.mseb.2020.114507

  10. Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35(3), 357–401 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  11. Zhou, B., Luo, W., Yang, J., Duan, X., Wen, Y., Zhou, H., Chen, R., Shan, B.: Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation. Compos. A Appl. Sci. Manuf. 90, 410–416 (2016). https://doi.org/10.1016/j.compositesa.2016.07.023

    Article  CAS  Google Scholar 

  12. Dong, M., Zhang, H., Tzounis, L., Santagiuliana, G., Bilotti, E., Papageorgiou, D.G.: Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review. Carbon 185, 57–81 (2021). https://doi.org/10.1016/j.carbon.2021.09.009

    Article  CAS  Google Scholar 

  13. Tezel, G.B., Sarmah, A., Desai, S., Vashisth, A., Green, M.J.: Kinetics of carbon nanotube-loaded epoxy curing: Rheometry, differential scanning calorimetry, and radio frequency heating. Carbon 175, 1–10 (2021). https://doi.org/10.1016/j.carbon.2020.12.090

    Article  CAS  Google Scholar 

  14. Abdalla, M., Dean, D., Robinson, P., Nyairo, E.: Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification. Polymer 49(15), 3310–3317 (2008). https://doi.org/10.1016/j.polymer.2008.05.016

    Article  CAS  Google Scholar 

  15. Puglia, D., Valentini, L., Armentano, I., Kenny, J.M.: Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy. Diam. Relat. Mater. 12(3–7), 827–832 (2003). https://doi.org/10.1016/s0925-9635(02)00358-8

    Article  ADS  CAS  Google Scholar 

  16. Tao, K., Yang, S., Grunlan, J.C., Kim, Y.-S., Dang, B., Deng, Y., Thomas, R.L., Wilson, B.L., Wei, X.: Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites. J. Appl. Polym. Sci. 102(6), 5248–5254 (2006). https://doi.org/10.1002/app.24773

    Article  CAS  Google Scholar 

  17. Li, Q., Zhang, S., Ye, J., Liu, X.: Multiple catalytic polymerization of phthalonitrile resin bearing benzoxazine moiety: Greatly reduced curing temperature. Eur. Polym. J. 180, 111472 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111472

  18. Chen, K., Campbell, J.A., Lewis, D.A.: Influence of postprinting conditions on morphologies in a three-dimensional printable dual-cure interpenetrating dimethacrylate/epoxy polymer network. ACS Applied Polymer Materials 4(12), 9076–9084 (2022). https://doi.org/10.1021/acsapm.2c01435

    Article  CAS  Google Scholar 

  19. Gao, Z., You, Y., Chen, Q., North, M., Xie, H.: Vanillin-derived α, ω-diene monomer for thermosets preparation via thiol–ene click polymerization. Green Chem. 25(1), 172–182 (2023). https://doi.org/10.1039/D2GC02901D

    Article  CAS  Google Scholar 

  20. Wu, J., Liao, H., Ma, Z., Song, H., Cheng, F.: Effect of different initial CaO/SiO2 molar ratios and curing times on the preparation and formation mechanism of calcium silicate hydrate. Materials (Basel, Switzerland) 16(2), 717–734 (2023). https://doi.org/10.3390/ma16020717

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Rau, D.A., Reynolds, J.P., Bryant, J.S., Bortner, M.J., Williams, C.B.: A rheological approach for measuring cure depth of filled and unfilled photopolymers at additive manufacturing relevant length scales. Addit. Manuf. 60, 103207 (2022). https://doi.org/10.1016/j.addma.2022.103207

  22. Kim, D., Centea, T., Nutt, S.R.: In-situ cure monitoring of an out-of-autoclave prepreg: Effects of out-time on viscosity, gelation and vitrification. Compos. Sci. Technol. 102, 132–138 (2014). https://doi.org/10.1016/j.compscitech.2014.07.027

    Article  CAS  Google Scholar 

  23. Mulle, M., Collombet, F., Olivier, P., Grunevald, Y.H.: Assessment of cure residual strains through the thickness of carbon–epoxy laminates using FBGs. Part I: Elementary specimen, Composites Part A: Applied Science and Manufacturing 40(1), 94–104 (2009). https://doi.org/10.1016/j.compositesa.2008.10.008

    Article  CAS  Google Scholar 

  24. Mulle, M., Collombet, F., Olivier, P., Zitoune, R., Huchette, C., Laurin, F., Grunevald, Y.H.: Assessment of cure-residual strains through the thickness of carbon–epoxy laminates using FBGs Part II: Technological specimen. Compos. A Appl. Sci. Manuf. 40(10), 1534–1544 (2009). https://doi.org/10.1016/j.compositesa.2009.06.013

    Article  CAS  Google Scholar 

  25. Hirota, I., Takeda, S.-I., Ogasawara, T.: Evaluation of thermosetting resin curing using a tilted fiber Bragg grating. Compos. A: Appl. Sci. Manuf. 158, 106956 (2022). https://doi.org/10.1016/j.compositesa.2022.106956

  26. Mizukami, K., Ikeda, T., Ogi, K.: Measurement of velocity and attenuation of ultrasonic guided wave for real-time estimation of cure-dependent anisotropic viscoelastic properties of carbon fiber-reinforced plastics. Ultrasonics 99, 105952 (2019). https://doi.org/10.1016/j.ultras.2019.105952

  27. Liu, X., Li, J., Zhu, J., Wang, Y., Qing, X.: Cure monitoring and damage identification of CFRP using embedded piezoelectric sensors network. Ultrasonics 115, 106470 (2021). https://doi.org/10.1016/j.ultras.2021.106470

  28. Hall, M., Zeng, X., Shelley, T., Schubel, P.: In situ thermoset cure sensing: A review of correlation methods. Polymers 14(15), 2978 (2022). https://doi.org/10.3390/polym14152978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. He, Y., Li, Y., Li, N., Hao, X.: Online monitoring method of degree of cure during non-isothermal microwave curing process. Mater. Res. Exp. 5(2), 025306 (2018). https://doi.org/10.1088/2053-1591/aaad33

  30. Challis, R.E., Blarel, F., Unwin, M.E., Kalashnikov, A.N.: Models of Ultrasonic Bulk Wave Propagation in Thermosets with Spatially Varying Viscoelastic Properties. AIP Conf. Proc. 760(1), 1258–1265 (2005). https://doi.org/10.1063/1.1916816

    Article  ADS  Google Scholar 

  31. Greeney, N.S., Strovink, K.M., Scales, A.M., Jessop, J.A., Bolton, J.S., Watson, C.C., Adams, D.E.: Non-contacting transfer of elastic energy into explosive simulants for dynamic property estimation. J. Appl. Phys. 115(19), 193514 (2014). https://doi.org/10.1063/1.4876739

  32. Yang, Z., Tian, Y., Li, W., Zhou, H., Zhang, W., Li, J.: Experimental investigation of the acoustic nonlinear behavior in granular polymer bonded explosives with progressive fatigue damage. Materials 10(6), 660 (2017). https://doi.org/10.3390/ma10060660

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Luo, Z., Zhu, H., Zhao, J.: In Situ Monitoring of Epoxy Resin Curing Process Using Ultrasonic Technique. Exp. Tech. 36(2), 6–11 (2012). https://doi.org/10.1111/j.1747-1567.2011.00741.x

    Article  Google Scholar 

  34. Sofer, G.A., Hauser, E.A.: A new tool for determination of the stage of polymerization of thermosetting polymers. J. Polym. Sci. 8(6), 611–620 (1952). https://doi.org/10.1002/pol.1952.120080606

    Article  ADS  CAS  Google Scholar 

  35. Lionetto, F., Tarzia, A., Coluccia, M., Maffezzoli, A.: Air-coupled ultrasonic cure monitoring of unsaturated polyester resins. Macromol. Symp. 247(1), 50–58 (2007). https://doi.org/10.1002/masy.200750107

    Article  CAS  Google Scholar 

  36. Jaunich, M., Stark, W.: Monitoring the vulcanization of rubber with ultrasound: Influence of material thickness and temperature. Polym. Testing 28(8), 901–906 (2009). https://doi.org/10.1016/j.polymertesting.2009.08.006

    Article  CAS  Google Scholar 

  37. Lionetto, F., Rizzo, R., Luprano, V.A.M., Maffezzoli, A.: Phase transformations during the cure of unsaturated polyester resins. Mater. Sci. Eng., A 370(1–2), 284–287 (2004). https://doi.org/10.1016/j.msea.2003.07.025

    Article  CAS  Google Scholar 

  38. Ghodhbani, N., Maréchal, P., Duflo, H.: Ultrasound monitoring of the cure kinetics of an epoxy resin: Identification, frequency and temperature dependence. Polym. Testing 56, 156–166 (2016). https://doi.org/10.1016/j.polymertesting.2016.10.009

    Article  CAS  Google Scholar 

  39. Lange, J., Altmann, N., Kelly, C.T., Halley, P.J.: Understanding vitrification during cure of epoxy resins using dynamic scanning calorimetry and rheological techniques. Polymer 41(15), 5949–5955 (2000). https://doi.org/10.1016/S0032-3861(99)00758-2

    Article  CAS  Google Scholar 

  40. White, S.R., Mather, P.T., Smith, M.J.: Characterization of the cure-state of DGEBA-DDS epoxy using ultrasonic, dynamic mechanical, and thermal probes. Polym. Eng. Sci. 42(1), 51–67 (2002). https://doi.org/10.1002/pen.10927

    Article  CAS  Google Scholar 

  41. McHugh, J.: Ultrasound technique for the dynamic mechanical analysis (DMA) of polymers, BAM Dissertation Series (2008). https://doi.org/10.14279/depositonce-1706

  42. Alig, I., Nancke, K., Johari, G.P.: Relaxations in thermosets. XXVI. Ultrasonic studies of the temperature dependence of curing kinetics of diglycidyl ether of bisphenol-A with catalyst. J. Polym. Sci. B: Polym. Phys. 32(8), 1465–1474 (1994). https://doi.org/10.1002/polb.1994.090320818

  43. Challis, R., Unwin, M., Chadwick, D., Freemantle, R., Partridge, I., Dare, D., Karkanas, P.: Following network formation in an epoxy/amine system by ultrasound, dielectric, and nuclear magnetic resonance measurements: a comparative study. J. Appl. Polym. Sci. 88(7), 1665–1675 (2003). https://doi.org/10.1002/app.11822

    Article  CAS  Google Scholar 

  44. Alig, I., Lellinger, D., Agarwal, S., Oehler, H.: Monitoring of photopolymerization kinetics and network formation by combined real-time near-infrared spectroscopy and ultrasonic reflectometry. React. Funct. Polym. 73(2), 316–322 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.08.006

    Article  CAS  Google Scholar 

  45. Afromowitz, M.A., Lam, K.-Y.: The optical properties of curing epoxies and applications to the fiber-optic epoxy cure sensor. Sens. Actuators, A 23(1), 1107–1110 (1990). https://doi.org/10.1016/0924-4247(90)87097-3

    Article  CAS  Google Scholar 

  46. Giordano, M., Nicolais, L., Calabrò, A.M., Cantoni, S., Cusano, A., Breglio, G., Cutolo, A.: A fiber optic thermoset cure monitoring sensor. Polym. Compos. 21(4), 523–530 (2000). https://doi.org/10.1002/pc.10207

    Article  CAS  Google Scholar 

  47. Pavlopoulou, S., Soutis, C., Staszewski, W.J.: Cure monitoring through time–frequency analysis of guided ultrasonic waves. Plast., Rubber Compos. 41(4–5), 180–186 (2012). https://doi.org/10.1179/1743289811Y.0000000052

    Article  ADS  CAS  Google Scholar 

  48. Su, Y., Xu, L., Zhou, P., Yang, J., Wang, K., Zhou, L.-M., Su, Z.: In situ cure monitoring and In-service impact localization of FRPs using Pre-implanted nanocomposite sensors. Compos. A: Appl. Sci. Manuf. 154, 106799 (2022). https://doi.org/10.1016/j.compositesa.2021.106799

  49. Bowler, A.L., Pound, M.P., Watson, N.J.: A review of ultrasonic sensing and machine learning methods to monitor industrial processes. Ultrasonics 124, 106776 (2022). https://doi.org/10.1016/j.ultras.2022.106776

  50. Schmachtenberg, E., Schulte zur Heide, J., Töpker, J.: Application of ultrasonics for the process control of Resin Transfer Moulding (RTM). Polym. Test. 24(3), 330–338 (2005). https://doi.org/10.1016/j.polymertesting.2004.11.002

  51. Hudson, T.B., Yuan, F.-G.: Automated in-process cure monitoring of composite laminates using a guided wave-based system with high-temperature piezoelectric transducers. J. Nondestruct. Eval., Diagn. Progn. Eng. Syst. 1(2), 021008–021008–8 (2018). https://doi.org/10.1115/1.4039230

  52. Parthun, M.G., Johari, G.P.: Dynamics of a molecule’s growth: Ultrasonic relaxation studies. J. Chem. Phys. 102(15), 6301–6307 (1995). https://doi.org/10.1063/1.469076

    Article  ADS  CAS  Google Scholar 

  53. Hsich, H.S.-Y.: Kinetic model of cure reaction and filler effect. J. Appl. Polym. Sci. 27(9), 3265–3277 (1982). https://doi.org/10.1002/app.1982.070270907

    Article  CAS  Google Scholar 

  54. Zhang, J., Ye, R., Zou, J., Tang, J., Wang, H.: A study of isothermal curing of PMI Using DMA. Adv. Mater. Sci. Eng. 2015, 695286 (2015). https://doi.org/10.1155/2015/695286

  55. Zhang, J., Wu, Y.-M., Ma, X., Huang, B.-Y., Lv, S., Jiang, J.-X., Tang, J.-J.: Isothermal curing kinetics of polymethacrylimide/nano-SiO2 composites based on a dynamic thermomechanical analysis. Mater. Tehnol. 55(2), 293–304 (2021). https://doi.org/10.17222/mit.2020.191

  56. Kalaee, M.R., Famili, M.H.N., Mahdavi, H.: Cure kinetic of poly (alkyltetrasulfide) using a rheological method. Polym.-Plast. Technol. Eng. 48(6), 627–632 (2009). https://doi.org/10.1080/03602550902824473

    Article  CAS  Google Scholar 

  57. Qi, Z., Tan, Y., Zhang, Z., Gao, L., Zhang, C., Tian, J.: Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites. RSC Adv. 8(67), 38689–38700 (2018). https://doi.org/10.1039/C8RA08312F

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kong, H.X.: Hybrids of carbon nanotubes and graphene/graphene oxide. Curr. Opin. Solid State Mater. Sci. 17(1), 31–37 (2013). https://doi.org/10.1016/j.cossms.2012.12.002

    Article  ADS  CAS  Google Scholar 

  59. Francesca Lionetto, A.M.: Relaxations during the postcure of unsaturated polyester networks by ultrasonic wave propagation, dynamic mechanical analysis, and dielectric analysis. J. Polym. Sci. B: Polym. Phys. 43(5), 596–602 (2005). https://doi.org/10.1002/polb.20359

  60. Lionetto, F., Maffezzoli, A.: Monitoring the cure state of thermosetting resins by ultrasound. Materials (Basel, Switzerland) 6(9), 3783–3804 (2013). https://doi.org/10.3390/ma6093783

    Article  ADS  PubMed  CAS  Google Scholar 

  61. Aggelis, D.G., Paipetis, A.S.: Monitoring of resin curing and hardening by ultrasound. Constr. Build. Mater. 26(1), 755–760 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.084

    Article  Google Scholar 

  62. Martínez-Miranda, M.R., García-Martínez, V., Gude, M.R.: Gel point determination of a thermoset prepreg by means of rheology. Polym. Test. 78, 105950 (2019). https://doi.org/10.1016/j.polymertesting.2019.105950

  63. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  ADS  CAS  Google Scholar 

  64. Rana, S., Alagirusamy, R., Joshi, M.: A review on carbon epoxy nanocomposites. J. Reinf. Plast. Compos. 28(4), 461–487 (2009). https://doi.org/10.1177/0731684407085417

    Article  CAS  Google Scholar 

  65. Cao, K., Feng, S., Han, Y., Gao, L., Hue Ly, T., Xu, Z., Lu, Y.: Elastic straining of free-standing monolayer graphene. Nat. Commun. 11(1), 284 (2020). https://doi.org/10.1038/s41467-019-14130-0

  66. Yen, M.-Y., Hsiao, M.-C., Liao, S.-H., Liu, P.-I., Tsai, H.-M., Ma, C.-C.M., Pu, N.-W., Ger, M.-D.: Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon 49(11), 3597–3606 (2011). https://doi.org/10.1016/j.carbon.2011.04.062

    Article  CAS  Google Scholar 

  67. Li, L., Liao, X., Sheng, X., Liu, P., Hao, Z., He, L., Qin, G.: Influence of surface modified graphene oxide on the mechanical performance and curing kinetics of epoxy resin. Polym. Adv. Technol. 31(8), 1865–1874 (2020). https://doi.org/10.1002/pat.4913

    Article  CAS  Google Scholar 

  68. Bommegowda, K.B., Renukappa, N.M., Rajan, J.S.: Effect of micro- and nanofiller hybrids on the dynamic mechanical properties of glass reinforced epoxy composites. Polym. Compos. 42(5), 2252–2267 (2021). https://doi.org/10.1002/pc.25974

    Article  CAS  Google Scholar 

  69. Ibarra, L., Paños, D.: Dynamic properties of thermoplastic butadiene–styrene (SBS) and oxidized short carbon fiber composite materials. J. Appl. Polym. Sci. 67(10), 1819–1826 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980307)67:10%3c1819::AID-APP15%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  70. Ashida, M., Noguchi, T., Mashimo, S.: Effect of matrix’s type on the dynamic properties for short fiber-elastomer composite. J. Appl. Polym. Sci. 30(3), 1011–1021 (1985). https://doi.org/10.1002/app.1985.070300311

    Article  CAS  Google Scholar 

  71. Yink, L., Zhou, Z., Luo Z., Zhong, J., Li, P., Yang, B., Yang, L.: Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber composites, Polymer Testing 80 (2019) 106092. https://doi.org/10.1016/j.polymertesting.2019.106092

  72. Ucpinar, B., Aytac, A.: Influence of different surface-coated carbon fibers on the properties of the poly(phenylene sulfide) composites. J. Compos. Mater. 53(8), 1123–1132 (2018). https://doi.org/10.1177/0021998318796159

    Article  CAS  Google Scholar 

  73. Raghvan, S., Singhal, P., Rattan, S., Tyagi A.K.: Durable PP/EPDM/GF/SiO(2) nanocomposites with improved strength and toughness for orthotic applications. J. Mech. Behav. Biomed. Mater. 138, 105582 (2023). https://doi.org/10.1016/j.jmbbm.2022.105582

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51303138).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Leping Huang and Jinchao Zhao; methodology, Jinchao Zhao; validation, Cui He and Liang Ren; formal analysis, Cui He and Liang Ren; investigation, Cui He and Liang Ren; data curation, Cui He and Liang Ren; writing—original draft preparation, Jinchao Zhao and Cui He; writing—review and editing, Jinchao Zhao; supervision, Jinchao Zhao and Leping Huang; project administration, Leping Huang; funding acquisition, Jinchao Zhao. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Leping Huang.

Ethics declarations

Competing Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., He, C., Ren, L. et al. Application of Ultrasonic Technique for Cure Monitoring of Epoxy/Graphene Oxide–Carbon Nanotubes Composites. Appl Compos Mater 31, 61–81 (2024). https://doi.org/10.1007/s10443-023-10162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10162-4

Keywords

Navigation