Skip to main content
Log in

Finite Element Analysis of Low-Speed Oblique Impact Behavior of Adhesively Bonded Composite Single-Lap Joints

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The development of a realistic numerical model that predicts the impact behavior of adhesively bonded composite joints is important for many industrial sectors such as automotive, aerospace, and marine. In this study, it was aimed to develop a numerical model that can predict the low-velocity oblique impact behavior of composite single-lap joints close to the experimental results. The validation of the proposed numerical model was carried out with the results of the previously experimentally tested joints. In explicit finite element analysis, the orthotropic material model and Hashin’s damage criterion were used in the numerical model of composite adherends. The adhesive region was divided into three different regions. The cohesive zone model (CZM) was used to determine the damage initiation and propagation in the upper and lower interface regions of adhesive. The middle region of the adhesive between the two cohesive interfaces was modeled with an elastic–plastic material model to reflect the plastic material behavior of the adhesive in the analysis. The effects of impact angle, fiber orientation, and overlap length on adhesive damage initiation and propagation were investigated in detail. There is a good agreement between the numerical and experimental results, considering the contact force-time variations and composite and adhesive damage. The impact angle and fiber angle had a significant effect on the impact behavior of the composite joints and the adhesive damage initiation and propagation. The increase in impact angle and fiber angle caused a decrease in the maximum contact force value. Adhesive damage propagation patterns varied according to the composite fiber orientation. In addition, since the shear toughness of the adhesive is higher than its tensile toughness, the amount of adhesive damage and damage propagation rate decreased as the impact angle increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

According to the protocol (FDK-2017-7318) signed among Authors and Presidency of Erciyes University, the full or partial use of all numerical analysis results in this study is subject to permission from Presidency of Erciyes University. Authors hold this permission to publish the journal article.

Abbreviations

LEFM :

Linear elastic fracture mechanics

MMF :

Mixed-mode flexure

CZM :

Cohesive zone model

SDEG :

Scalar stiffness degradation variable

DAMAGEFT :

Fiber tensile damage variable

DAMAGEFC :

Fiber compressive damage variable

DAMAGEMT :

Matrix tensile damage variable

DAMAGEMC :

Matrix compressive damage variable

DAMAGESHR :

Matrix shear damage variable

E :

Modulus of elasticity

G :

Shear modulus

\(\upsilon\) :

Poisson’s ratio

\(X^T\) :

Longitudinal tensile strength

\(X^C\) :

Longitudinal compressive strength

\(Y^T\) :

Transverse tensile strength

\(Y^C\) :

Transverse compressive strength

\(S^L\) :

Longitudinal shear strength

\(S^T\) :

Transverse shear strength

\(G_{ft}^c\) :

Fiber tensile fracture energy

\(G_{fc}^c\) :

Fiber compressive fracture energy

\(G_{mt}^c\) :

Matrix tensile fracture energy

\(G_{mc}^c\) :

Matrix compressive fracture energy

\(t_{n}\) :

Cohesive traction in tension

\(t_{s,t}\) :

Cohesive tractions in shear

\(\delta _{n}\) :

Cohesive separation in tension

\(\delta _{s,t}\) :

Cohesive separations in shear

D :

Damage parameter

\(\alpha\) :

Non-dimensional damage parameter

\(\delta _m^o\) :

Effective interfacial separation at failure initiation

\(\delta _m^f\) :

Effective interfacial separation at failure

\(\delta _m^{max}\) :

Effective interfacial separation at complete failure

References

  1. Da Silva, L.F., Dillard, D.A., Blackman, B., Adams, R.D.: Testing adhesive joints: best practices. John Wiley & Sons (2012)

  2. da Silva, L.F.M., Pirondi, A., Öchsner, A.: Hybrid adhesive joints, p. 309. Springer Science & Business Media Berlin Heidelberg (2011)

  3. Adams, R.D., Comyn, J., Wake, W.C.: Structural adhesive joints in engineering, p. 359. Chapman & Hall London (1997) 

  4. Da Silva, L.F., Öchsner, A., Adams, R.D.: Handbook of adhesion technology, p. 1554. Springer Science & Business Media Verlag Berlin Heidelberg (2011)

  5. Machado, J.J.M., Marques, E.A.S., da Silva, L.F.M.: Adhesives and adhesive joints under impact loadings: An overview. J. Adhes. 94(6), 421–452 (2018)

    Article  CAS  Google Scholar 

  6. Chen, C., Sun, C., Han, X., Hu, D., Zhou, J., Guan, Z.: The structural response of the thermoplastic composite joint subjected to out-of-plane loading. Int. J. Impact Eng 145, 103691 (2020)

    Article  Google Scholar 

  7. He, B., Pan, Y.: Failure mechanism of single lap, adhesively bonded composite-titanium joints subjected to solid projectile impact. J. Adhes. Sci. Technol. 36(4), 370–391 (2022)

    Article  CAS  Google Scholar 

  8. Anderson, T.L.: Fracture mechanics: fundamentals and applications. CRC press (2017)

  9. Hazimeh, R., Challita, G., Khalil, K., Othman, R.: Finite element analysis of adhesively bonded composite joints subjected to impact loadings. Int. J. Adhes. Adhes. 56, 24–31 (2015)

    Article  CAS  Google Scholar 

  10. Machado, J., Gamarra, P.-R., Marques, E., da Silva, L.F.: Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industry. Compos. Struct. 185, 373–380 (2018)

    Article  Google Scholar 

  11. Morgado, M., Carbas, R., Dos Santos, D., Da Silva, L.: Strength of cfrp joints reinforced with adhesive layers. Int. J. Adhes. Adhes. 97, 102475 (2020)

    Article  CAS  Google Scholar 

  12. Machado, J., Nunes, P., Marques, E., da Silva, L.F.: Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditions. Int. J. Adhes. Adhes. 96, 102501 (2020)

    Article  CAS  Google Scholar 

  13. Peres, L., Arnaud, M., Silva, A., Campilho, R., Machado, J., Marques, E., dos Reis, M., Da Silva, L.: Geometry and adhesive optimization of single-lap adhesive joints under impact. J. Adhes. 98(6), 677–703 (2022)

    Article  CAS  Google Scholar 

  14. Araújo, H., Machado, J., Marques, E., Da Silva, L.: Dynamic behaviour of composite adhesive joints for the automotive industry. Compos. Struct. 171, 549–561 (2017)

    Article  Google Scholar 

  15. Hu, C., Huang, G., Li, C.: Experimental and numerical study of low-velocity impact and tensile after impact for CFRP laminates single-lap joints adhesively bonded structure. Materials 14(4), 1016 (2021)

    Article  CAS  Google Scholar 

  16. Huang, W., Sun, L., Li, L., Shen, L., Huang, B., Zhang, Y.: Investigations on low-energy impact and post-impact fatigue of adhesively bonded single-lap joints using composites substrates. J. Adhes. 96(15), 1326–1354 (2020)

    Article  CAS  Google Scholar 

  17. Liu, B., Yan, R.: Damage mechanism and residual strength at different impact locations for composite bonding scarf repairs. J. Adhes. Sci. Technol. 32(23), 2523–2536 (2018)

    Article  CAS  Google Scholar 

  18. Erbayrak, E.: Investigations of low-velocity impact behaviour of single-lap joints having dissimilar hybrid composite adherends through cohesive zone model approach. J. Adhes. Sci. Technol. 36(5), 545–565 (2022)

    Article  CAS  Google Scholar 

  19. Boling, H., Dongyun, G.: Dynamic analysis of single-lap, adhesively bonded composite-titanium joints subjected to solid projectile impact. J. Adhes. Sci. Technol. 32(11), 1176–1199 (2018)

    Article  Google Scholar 

  20. Atahan, M.G., Apalak, M.K.: Low-speed bending impact behavior of adhesively bonded single-lap joints. J. Adhes. Sci. Technol. 31(14), 1545–1575 (2017)

    Article  Google Scholar 

  21. Atahan, M.G., Apalak, M.K.: Low-speed bending impact behaviour of adhesively bonded dissimilar single-lap joints. J. Adhes. Sci. Technol. 36(16), 1794–1822 (2022)

    Article  CAS  Google Scholar 

  22. Atahan, M.G., Apalak, M.K.: Experimental investigation of oblique impact behavior of adhesively bonded composite single-lap joints. Appl. Compos. Mater. 29(3), 1293–1319 (2022)

    Article  Google Scholar 

  23. Zhang, C., Huang, J., Li, X., Zhang, C.: Numerical study of the damage behavior of carbon fiber/glass fiber hybrid composite laminates under low-velocity impact. Fibers Polym. 21, 2873–2887 (2020)

    Article  CAS  Google Scholar 

  24. Zhang, T., Yan, Y., Li, J.: Experiments and numerical simulations of low-velocity impact of sandwich composite panels. Polym. Compos. 38(4), 646–656 (2017)

    Article  CAS  Google Scholar 

  25. Araldite 2015 epoxy adhesive, Huntsman Advanced Materials. http://www.huntsman.com. Accessed 4 Apr 2023

  26. Yildirim, M., Apalak, M.K.: Transverse low-speed impact behavior of adhesively bonded similar and dissimilar clamped plates. J. Adhes. Sci. Technol. 25(1–3), 69–91 (2011)

    Article  CAS  Google Scholar 

  27. ABAQUS, Analysis user’s guide documentation version 6.13, Dassault Systems SIMULIA Corp (2013)

  28. Matzenmiller, A., Lubliner, J., Taylor, R.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)

    Article  Google Scholar 

  29. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  Google Scholar 

  30. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  31. Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, pp. 1–37. NASA/TM-2002-211737 (2002)

  32. Campilho, R.D., Banea, M.D., Neto, J., da Silva, L.F.: Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 44, 48–56 (2013)

    Article  CAS  Google Scholar 

  33. Moreira, R.D., de Moura, M.F., Silva, F.G., Rodrigues, J.S., Silva, F.D.: Fracture characterization of a bi-material bonded aluminum/CFRP joints under mixed-mode i+ ii loading. Fatigue Fract. Eng. Mater. Struct. 45(8), 2215–2226 (2022)

    Article  Google Scholar 

  34. Wong, K.J.: Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite: application to bonded patch repairs of composite structures. PhD thesis, Dijon (2013)

  35. Kaddour, A., Hinton, M.J., Smith, P.A., Li, S.: Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 47(20–21), 2427–2442 (2013)

    Article  Google Scholar 

  36. Aktaş, M., Karakuzu, R.: Determination of mechanical properties of glass-epoxy composites in high temperatures. Polym. Compos. 30(10), 1437–1441 (2009)

    Article  Google Scholar 

  37. Icten, B.M., Atas, C., Aktas, M., Karakuzu, R.: Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Compos. Struct. 91(3), 318–323 (2009)

    Article  Google Scholar 

  38. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. A Appl. Sci. Manuf. 38(11), 2333–2341 (2007)

    Article  Google Scholar 

Download references

Funding

The research in this paper was financially supported by the Scientific Research Project Division of Erciyes University under contract FDK-2017-7318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gokhan Atahan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atahan, M.G., Apalak, M.K. Finite Element Analysis of Low-Speed Oblique Impact Behavior of Adhesively Bonded Composite Single-Lap Joints. Appl Compos Mater 30, 955–985 (2023). https://doi.org/10.1007/s10443-023-10119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10119-7

Keywords

Navigation