Skip to main content
Log in

Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced composite materials are widely employed in aircraft structures due to their high specific strength and high specific modulus. However, the poor impact resistance of carbon fiber reinforced composites creates challenges for aircraft design and maintenance. The introduction of a layer of glass fibers in the hybrid composites can effectively improve the impact performance of the composite laminate. In this work, finite element models for low-velocity impact of carbon fiber laminate and glass fiber laminate are established and validated. A VUMAT subroutine in Abaqus is implemented to evaluate the progressive damage of the composite materials, and a cohesive-zone model is employed to simulate the interface failure behavior. The impact resistance of hybrid composite laminates is systematically studied based on the results of the finite element simulation. Ten different hybrid configurations are studied and compared with a composite laminate having a single type of fiber reinforcement. The numerical results for the global mechanical response, damage modes and characteristics are extracted and systematically discussed. The results suggest that laminates having carbon fiber layers on the top and bottom surfaces with glass fiber layers between them perform the best in terms of energy absorption. When the glass fiber layers are used for the top and bottom surfaces with carbon fiber layers as the core, the presence of a carbon fiber layer with a ±45 ° orientation can help to reduce the damage area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lou, H. Cai, P. Yu, F. Jiao, and X. Han, Compos. Struct., 163, 238 (2017).

    Article  Google Scholar 

  2. Q. Meng and Z. Wang, Polym. Compos., 38, 2536 (2017).

    Article  CAS  Google Scholar 

  3. Z. Zhao, H. Dang, C. Zhang, G. J. Yun, and Y. Li, Compos. Part A Appl. Sci. Manuf., 110, 113 (2018).

    Article  CAS  Google Scholar 

  4. F. Sarasini, J. Tirillò, L. Ferrante, M. Valente, T. Valente, L. Lampani, P. Gaudenzi, S. Cioffi, S. Iannace, and L. Sorrentino, Compos. Part B Eng., 59, 204 (2014).

    Article  CAS  Google Scholar 

  5. S. Patel and C. G. Soares, Compos. Struct., 200, 659 (2018).

    Article  Google Scholar 

  6. H. Miao, Z. Wu, Z. Ying, and X. Hu, Compos. Struct., 227, 111343 (2019).

    Article  Google Scholar 

  7. S. Z. H. Shah, S. Karuppanan, P. S. M. Megat-Yusoff, and Z. Sajid, Compos. Struct., 217, 100 (2019).

    Article  Google Scholar 

  8. I. Živković, C. Fragassa, A. Pavlović, and T. Brugo, Compos. Part B Eng., 111, 148 (2017).

    Article  CAS  Google Scholar 

  9. M. V. Hosur, M. Adbullah, and S. Jeelani, Compos. Struct., 67, 253 (2005).

    Article  Google Scholar 

  10. M. Tehrani, H. Nosraty, M. Mehrdad, G. Minak, and D. Ghelli, Mater. Des., 31, 3835 (2010).

    Article  CAS  Google Scholar 

  11. M. Sayer, N. B. Bektas, and O. Sayman, Compos. Struct., 92, 1256 (2010).

    Article  Google Scholar 

  12. A. K. Barouni and H. N. Dhakal, Compos. Struct., 226, 111224 (2019).

    Article  Google Scholar 

  13. S. N. A. Safri, M. T. H. Sultan, M. Jawaid, and K. Jayakrishna, Compos. Part B Eng., 133, 112 (2018).

    Article  CAS  Google Scholar 

  14. P. Hung, K. Lau, L. Cheng, J. Leng, and D. Hui, Compos. Part B Eng., 133, 86 (2018).

    Article  CAS  Google Scholar 

  15. I. Papa, L. Boccarusso, A. Langella, and V. Lopresto, Compos. Struct., 232, 111571 (2020).

    Article  Google Scholar 

  16. T. S. Reddy, K. Mogulanna, K. G. Reddy, P. R. S. Reddy, and V. Madhu, Procedia Struct. Integr., 14, 265 (2019).

    Article  Google Scholar 

  17. G. Kretsis, Compos., 18, 13 (1987).

    Article  CAS  Google Scholar 

  18. K. S. Pandya, C. Veerraju, and N. K. Naik, Mater. Des., 32, 4094 (2011).

    Article  CAS  Google Scholar 

  19. C. Dong and I. J. Davies, Compos. Part B Eng., 72, 65 (2015).

    Article  CAS  Google Scholar 

  20. M. Kalantari, C. Dong, and I. J. Davies, Compos. Struct., 138, 264 (2016).

    Article  Google Scholar 

  21. N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu, and N. ShamaRao, Compos. Part B Eng., 32, 565 (2001).

    Article  Google Scholar 

  22. Z. Khan, Adv. Mater. Res., 488, 501 (2012).

    Article  CAS  Google Scholar 

  23. Y. Swolfs, Y. Geboes, L. Gorbatikh, and S. T. Pinho, Compos. Part A Appl. Sci. Manuf., 103, 1 (2017).

    Article  CAS  Google Scholar 

  24. D. Chen, Q. Luo, M. Meng, and G. Sun, Compos. Part B Eng., 176, 107191 (2019).

    Article  CAS  Google Scholar 

  25. Y. Hu, W. Liu, and Y. Shi, Compos. Struct., 216, 127 (2019).

    Article  Google Scholar 

  26. A. K. Bandaru, S. Patel, S. Ahmad, and N. Bhatnagar, J. Compos. Mater., 52, 877 (2018).

    Article  CAS  Google Scholar 

  27. N. Hongkarnjanakul, C. Bouvet, and S. Rivallant, Compos. Struct., 106, 549 (2013).

    Article  Google Scholar 

  28. H. Singh, K. K. Namala, and P. Mahajan, Compos. Part B Eng., 76, 235 (2015).

    Article  CAS  Google Scholar 

  29. J. P. Hou, N. Petrinic, and C. Ruiz, Compos. Sci. Technol., 61, 2069 (2001).

    Article  Google Scholar 

  30. J. P. Hou, N. Petrinic, and C. Ruiz, Compos. Sci. Technol., 60, 273 (2000).

    Article  CAS  Google Scholar 

  31. W. Tan, B. G. Falzon, L. N. S. Chiu, and M. Price, Compos. Part A Appl. Sci. Manuf., 71, 212 (2015).

    Article  CAS  Google Scholar 

  32. X. Li, D. Ma, H. Liu, W. Tan, X. Gong, C. Zhang, and Y. Li, Compos. Struct., 207, 727 (2019).

    Article  Google Scholar 

  33. C. S. Lee, J. H. Kim, S. K. Kim, D. M. Ryu, and J. M. Lee, Compos. Struct., 121, 406 (2015).

    Article  Google Scholar 

  34. P. F. Liu, B. B. Liao, L. Y. Jia, and X. Q. Peng, Compos. Struct., 149, 408 (2016).

    Article  Google Scholar 

  35. V. S. Sokolinsky, K. C. Indermuehle, and J. A. Hurtado, Compos. Part A Appl. Sci. Manuf., 42, 1119 (2011).

    Article  Google Scholar 

  36. M. L. Benzeggagh and M. Kenane, Compos. Sci. Technol., 56, 439 (1996).

    Article  CAS  Google Scholar 

  37. T. S. Reddy and K. Mogulanna, Procedia Struct. Integr., 14, 265 (2019).

    Article  Google Scholar 

  38. I. Lapczyk and J. A. Hurtado, Compos. Part A Appl. Sci. Manuf., 38, 2333 (2007).

    Article  CAS  Google Scholar 

  39. P. Zhang, Y. Feng, T. Q. Bui, X. Hu, and W. Yao, Compos. Struct., 232, 111551 (2020).

    Article  Google Scholar 

  40. J. Zhi and T. E. Tay, Comput. Meth. Appl. Mech. Eng., 351, 60 (2019).

    Article  Google Scholar 

  41. S. Chen, M. Zang, and W. Xu, Comput. Meth. Appl. Mech. Eng., 294, 72 (2015).

    Article  Google Scholar 

  42. G. Vigueras, F. Sket, C. Samaniego, L. Wu, L. Noels, D. Tjahjanto, E. Casoni, G. Houzeaux, A. Makradi, J. M. Molina-Aldareguia, M. Vázquez, and A. Jérusalem, Compos. Struct., 125, 542 (2015).

    Article  Google Scholar 

  43. S. Chen, N. Mitsume, W. Gao, T. Yamada, M. Zang, and S. Yoshimura, Comput. Struct., 215, 80 (2019).

    Article  Google Scholar 

  44. S. Chen, N. Mitsume, and T. Q. Bui, Compos. Struct., 229, 111406 (2019).

    Article  Google Scholar 

  45. B. B. Liao and P. F. Liu, Compos. Struct., 159, 567 (2017).

    Article  Google Scholar 

  46. R. Ren, J. Zhong, G. Le, and D. Ma, Compos. Struct., 220, 481 (2019).

    Article  Google Scholar 

  47. Z. Wang and J. Zhao, Thin-Walled Struct., 144, 106321 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11772267), the 111 Project (Grant No. BP0719007), and the Shaanxi Key Research and Development Program for International Cooperation and Exchanges (Grant No. 2019KW-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, J., Li, X. et al. Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact. Fibers Polym 21, 2873–2887 (2020). https://doi.org/10.1007/s12221-020-0026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-0026-2

Keywords

Navigation