Skip to main content
Log in

Experimental Study on Impact Damage Resistance and Residual Compression Behaviors of Scarf Repaired Composite Plates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Adhesively bonded repaired aircraft composite structures are also susceptible to low-velocity impact (LVI) events. However, the impact responses and the residual behaviors of the bonded repaired structures are still not expressly revealed. In this paper, the impact damage resistance and residual compression behaviors of scarf repaired composite plates were investigated through experiments. LVI and compression after impact (CAI) experiments were carried out for both scarf repaired plates and virgin composite plates. Impact responses including the impact curves, dent depth, dissipated energy and delamination damage, and residual compression behaviors including the residual strength, failure mode and the failure process were compared and analyzed. The results show that scarf repaired plates get smaller dent depth but larger delamination area than the virgin plates due to the higher out-of-plane stiffness and the cushioning effect of the ductile adhesive layer. The large-area delamination causes a reduction of the compression strength due to sub-laminate buckling and delamination propagation. Therefore, scarf repaired plates might have lower residual compressive strength than virgin composite plates under the same impact energy. It is suggested to comprehensively adopt parameters such as delamination area and dent depth to characterize the impact damage resistance of the bonded scarf repaired structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schmid Fuertes, T.A., Kruse, T., Körwien, T., et al.: Bonding of CFRP primary aerospace structures—discussion of the certification boundary conditions and related technology fields addressing the needs for development. Compos. Interfaces 22(8), 795–808 (2015)

    Article  CAS  Google Scholar 

  2. Rhead, A.T., Butler, R., Hunt, G.W.: Compressive strength of composite laminates with delamination-induced interaction of panel and sublaminate buckling modes. Compos. Struct 171, 326–334 (2017)

    Article  Google Scholar 

  3. Ghelli, D., Minak, G.: Low velocity impact and compression after impact tests on thin carbon/epoxy laminates. Compos. Part B: Eng 42(7), 2067–2079 (2011)

    Article  Google Scholar 

  4. Riccio, A., Di Felice, G., Scaramuzzino, F., et al.: A practical tool for the preliminary design of bonded composite repairs. Appl. Compos. Mater 21(3), 495–509 (2014)

    Article  Google Scholar 

  5. Riccio, A., Ricchiuto, R., Di Caprio, F., et al.: Numerical investigation of constitutive material models on bonded joints in scarf repaired composite laminates. Eng. Fract. Mech 173, 91–106 (2017)

    Article  Google Scholar 

  6. Kwon, Y.W., Marron, A.: Scarf joints of composite materials: testing and analysis. Appl. Compos. Mater 16, 365–378 (2009)

    Article  CAS  Google Scholar 

  7. Gunnion, A.J., Herszberg, I.: Parametric study of scarf joints in composite structures. Compos. Struct 75(1–4), 364–376 (2006)

    Article  Google Scholar 

  8. Katnam, K.B., Silva, L.F.M.D., Young, T.M.: Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities. Prog. Aerosp. Sci 61, 26–42 (2013)

    Article  Google Scholar 

  9. Archer, E., Mcilhagger, A.: Polymer Composites in the Aerospace Industry, pp. 393–412. Woodhead Publishing, England (2014)

    Google Scholar 

  10. Zhou, J.Z., Guan, Z.D., OuyangT, et al.: Experimental study on compression behaviors of scarf patch repaired stiffened composite panels after low-velocity impact. CCTAM 2019: Proceedings of the Chinese Congress of Theoretical and Applied Mechanics; HangZhou, China [Chinese] (2019)

  11. Su, Y.R., Guan, Z.D., Wang, X., et al.: Experimental study on static compression and fatigue property of scarf repaired composite laminates. Compos. Sci. Eng 5, 98-103Chinese (2021)

    Google Scholar 

  12. Wang, X., Huang, J., Huang, X., et al.: Experimental and numerical study on softened inclusions equivalent method for impacted stiffened panel skin. Appl. Compos. Mater 28, 39–58 (2021)

    Article  Google Scholar 

  13. Wang, X., Huang, J., Tan, R., et al.: Experimental investigation on damage mechanisms and buckling behaviors of thin composite laminates in compression after impact. Compos. Struct 256, 113–122 (2021)

    Article  Google Scholar 

  14. Takahashi, I., Ito, Y., Takeda, S., et al.: Impact damage detection on scarf-repaired composites using Lamb wave sensing. ICCM-16: Proceedings of the 16th International Conferences on Composite Materials; Japan (2007)

  15. Harman, A.B., Wang, C.H.: Damage tolerance and impact resistance of composite scarf joints. ICCM-16: Proceedings of the 16th International Conferences on Composite Materials; Japan (2007)

  16. Harman, A.B., Rider, A.N.: Impact damage tolerance of composite repairs to highly-loaded, high temperature composite structures. Compos. Part A-Applied Sci. Manuf 42(10), 1321–1334 (2011)

    Article  Google Scholar 

  17. Wang, C.H., Venugopal, V., Peng, L.: Stepped flush repairs for primary composite structures. J. Adhes 91(1–2), 95–112 (2015)

    Article  CAS  Google Scholar 

  18. Nie, H.C., Xu, J.F., Guan, Z.D., et al.: Tensile behavior of scarf joints after impact in different locations. J. Beijing Univ. Aeronaut. Astronaut 42(11), 2306-2320Chinese (2016)

    Google Scholar 

  19. Liu, B., Xu, F., Qin, J., et al.: Study on impact damage mechanisms and TAI capacity for the composite scarf repair of the primary load-bearing level. Compos. Struct 181, 183–193 (2017)

    Article  Google Scholar 

  20. Liu, B., Han, Q., Zhong, X., et al.: The impact damage and residual load capacity of composite stepped bonding repairs and joints. Compos. Part B 158, 339–351 (2019)

    Article  CAS  Google Scholar 

  21. Guo, X., Li, Z.S., Nie, H.C., et al.: Impact resistance and damage tolerance of scarf-repaired composite structures: an experimental investigation. Polym. Compos 37(6), 1681–1694 (2016)

    Article  CAS  Google Scholar 

  22. Kumari, P., Alam, A., Saahil, et al.: Estimation of low velocity impact on the scarf repair GFRP composite: Experimental method. Mater. Today: Proc. 43, 731–739 (2021)

  23. Kumari, P., Alam, A., Saahil: Influence of the impact position on scarf repair composite under low velocity impact: FEA investigation. Mater. Today: Proc. 38, 3005–3013 (2021)

  24. Kumari, P., Alam, A., Saahil: Multi-impact on scarf repaired composite laminates: FE investigation. Mater. Today: Proc. 46, 645–650 (2021)

  25. Sun, Z.H., Tie, Y., Hou, Y.L., et al.: Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP composite laminates. Acta Materiae Compositae Sinica 36(5), 1114-1123Chinese (2019)

    Google Scholar 

  26. Zhou, X.H., Tie, Y., Li, C., et al.: Effects of patch parameters on anti-impact damage performance of adhesive repaired carbon fiber laminates. J. Vib. Shock 38(3), 271-278Chinese (2019)

    Google Scholar 

  27. ASTM D7136/D7136M-15: Standard Test Method for Measuring the Damage Resistance of a fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event. American Society for Testing and Materials, Philadelphia (2015)

    Google Scholar 

  28. Su, Y.R., Guan, Z.D., Wang, X., et al.: Experimental and numerical studies on the failure mechanism of the composite scarf joints with bonding flaws. Appl. Compos. Mater 28, 1399–1425 (2021)

    Article  Google Scholar 

  29. Zhang, X.W., Liang, X.Z., Xue, X.C., et al.: Studies on Tensile-shear Performance of Interface of J116B Adhesive Film and Carbon Fiber/QY9611 Composites Using Different Bonding Process. Proceedings of the 17th National Conference on Composite Materials; Beijing[Chinese] (2012)

  30. Polimeno, U., Meo, M.: Detecting barely visible impact damage detection on aircraft composites structures. Compos. Struct 91, 398–402 (2009)

    Article  Google Scholar 

  31. Qiu, X.Q., Chen, L., Li, Y.H.: Biaxial loading verification for an in-plane failure criterion of laminates with barely visible impact damages (BVID). Acta Materiae Compositae Sinica 39(2), 845-853Chinese (2022)

    Google Scholar 

  32. ASTM D7137/D7137M-12: Standard test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. American Society for Testing and Materials, Philadelphia (2012)

    Google Scholar 

  33. Evci, C., Gülgeç, M.: An experimental investigation on the impact response of composite materials. Int. J. Impact Eng 43, 40–51 (2012)

    Article  Google Scholar 

  34. Aktas, M., Atas, C., Ìçten, B.M., et al.: An experimental investigation of the impact response of composite laminates. Compos. Struct 87, 307–313 (2009)

    Article  Google Scholar 

  35. Tan, R.M.: Study on the Issues of Low-Velocity Impact Damage Tolerance of Composite Structures [dissertation]. Beihang University, Beijing [Chinese] (2020)

  36. Ji, Z.J.: Study on Issues Concerning Impact Damage Resistance and Damage Tolerance of Composite Laminates [dissertation]. Beihang University, Beijing [Chinese] (2017)

  37. Guan, Z.D., He, W., Chen, J., et al.: Permanent indentation and damage creation of laminates with different composite systems: an experimental investigation. Polym. Compos 35(5), 872–883 (2014)

    Article  CAS  Google Scholar 

  38. Ouyang, T., Sun, W., Bao, R., et al.: Effects of matrix cracks on delamination of composite laminates subjected to low-velocity impact. Compos. Struct 262, 1133–1154 (2021)

    Article  Google Scholar 

  39. Tan, R.M., Guan, Z.D., Sun, W., et al.: Experiment investigation on impact damage and influences on compression behaviors of single T-stiffened composite panels. Compos. Struct 203, 486–497 (2018)

    Article  Google Scholar 

  40. Tuo, H.L., Lu, Z.X., Ma, X.P., et al.: Study on delamination damage evolution of composite L-shaped adhesive joint based on cohesive behavior. J. Northwest. Polytechnical Univ. 39(2), 309-316Chinese (2021)

    Article  Google Scholar 

  41. Li, G., Li, C.: Assessment of debond simulation and cohesive zone length in a bonded composite joint. Compos. B Eng 69, 359–368 (2015)

    Article  CAS  Google Scholar 

  42. Alvarez, D., Blackman, B.R.K., Guild, F.J., et al.: Mode I fracture in adhesively bonded joints: a mesh-size independent modelling approach using cohesive elements. Eng. Fract. Mech 115, 73–95 (2014)

    Article  Google Scholar 

  43. Figueiredo, J.C.P., Campilho, R.D.S.G., Marques, E.A.S., et al.: Adhesive thickness influence on the shear fracture toughness measurements of adhesive joints. Int. J. Adhesion Adhes 83, 15–23 (2018)

    Article  CAS  Google Scholar 

  44. Yang, Y., Sun, X.S., Yang, S.C., et al.: Experimental study on compressive failure mechanism of low-velocity-impact damaged composite laminates. Acta Mater. Compos Sin. 29(3), 197-202Chinese (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Wang, X., Li, Z. et al. Experimental Study on Impact Damage Resistance and Residual Compression Behaviors of Scarf Repaired Composite Plates. Appl Compos Mater 30, 887–911 (2023). https://doi.org/10.1007/s10443-023-10118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10118-8

Keywords

Navigation