Skip to main content
Log in

Predictive Model for Creep Behavior of Composite Materials Using Gene Expression Programming

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this article, a new method for establishing creep predictive model using gene expression programming (GEP) is proposed. The three-point bending tests under constant load are carried out to determine time-dependent creep curves of fiber reinforced polymer materials with different lay-up styles, a modeling program is developed to predict creep behavior of composite materials. The creep of fiber is much smaller than that of resin matrix, various fiber layups play a role in constraining the deformation of resin, resulting in differences in creep performance of composites. The mathematical model satisfies the variation law that creep strain monotonically increases with time and tends to be stable. Based on 0 ~ 1000 h experimental data, the creep model is established by GEP, and then utilized to predict creep ranging from 1000 to 2000 h, the predicted values are in good agreement with experimental values. The fitting efficiency and prediction accuracy of GEP model are demonstrated by R2, RMSE, MAE and RRSE metrics. Moreover, taking R2 as a statistical metric, the validity of developed model is verified by comparison with Burgers model, Findley model and HKK model. Creep factor calculated by GEP model is lower than standard specified value, and the relative errors δ of creep deflection are very low, all within about 10%, indicating that GEP model can accurately predict the long-term creep performance of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Demircan, G., Kisa, M., Ozen, M., Aktas, B.: Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran. Polym. J. 29, 253–264 (2020). https://doi.org/10.1007/s13726-020-00790-z

    Article  CAS  Google Scholar 

  2. Demircan, G., Kisa, M., Ozen, M., Acikgoz, A.: Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mech. Compos. Mater. 57(4), 503–516 (2021). https://doi.org/10.1007/s11029-021-09973-y

    Article  CAS  Google Scholar 

  3. Ozen, M., Demircan, G., Kisa, M., Acikgoz, A., Ceyhan, G., Isıker, Y.: Thermal properties of surface-modified nano-Al2O3/Kevlar fiber/ epoxy composites. Mater. Chem. Phys. 278, 125689 (2022). https://doi.org/10.1016/j.matchemphys.2021.125689

    Article  CAS  Google Scholar 

  4. Berardi, V.P., Perrella, M., Feo, L., Cricrì, G.: Creep behavior of GFRP laminates and their phases: experimental investigation and analytical modeling. Compos. Part B-Eng. 122, 136–144 (2017). https://doi.org/10.1016/j.compositesb.2017.04.015

    Article  CAS  Google Scholar 

  5. Jia, Y., Peng, K., Gong, X., Zhang, Z.: Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plasticity. 27(8), 1239–1251 (2011). https://doi.org/10.1016/j.ijplas.2011.02.004

    Article  CAS  Google Scholar 

  6. Rafiee, R., Mazhari, B.: Simulation of the long-term hydrostatic tests on glass fiber reinforced plastic pipes. Compos. Struct. 136, 56–63 (2016). https://doi.org/10.1016/j.compstruct.2015.09.058

    Article  Google Scholar 

  7. Katouzian, M., Vlase, S., Scutaru, M.L.: Finite element method-based simulation creep behavior of viscoelastic carbon-fiber composite. Polymers 13(7), 1017 (2021). https://doi.org/10.3390/polym13071017

    Article  CAS  Google Scholar 

  8. Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N.: Comparison of static and long-term creep behaviors between balau wood and glass fiber reinforced polymer composite for cross-arm application. Fiber. Polym. 22(3), 793–803 (2021). https://doi.org/10.1007/s12221-021-0512-1

    Article  CAS  Google Scholar 

  9. Asyraf, M.R.M., Ishak, M.R., Sapuan, S.M., Yidris, N.: Utilization of bracing arms as additional reinforcement in pultruded glass fiber-reinforced polymer composite cross-arms: creep experimental and numerical analyses. Polymers 13(4), 620 (2021). https://doi.org/10.3390/polym13040620

    Article  CAS  Google Scholar 

  10. Harries, K.A., Guo, Q., Cardoso, D.: Creep and creep buckling of pultruded glass-reinforced polymer members. Compos. Struct. 181, 315–324 (2017). https://doi.org/10.1016/j.compstruct.2017.08.098

    Article  Google Scholar 

  11. Ghosh, S.K., Rajesh, P., Srikavya, B., Rathore, D.K., Prusty, R.K., Ray, B.C.: Creep behavior prediction of multi-layer graphene embedded glass fiber/epoxy composites using time-temperature superposition principle. Compos. Part A-Appl. S. 107, 507–518 (2018). https://doi.org/10.1016/j.compositesa.2018.01.030

    Article  CAS  Google Scholar 

  12. Yang, Z., Wang, H., Ma, X., Shang, F., Ma, Y., Shao, Z., Hou, D.: Flexural creep tests and long-term mechanical behavior of fiber-reinforced polymeric composite tubes. Compos. Struct. 193, 154–164 (2018). https://doi.org/10.1016/j.compstruct.2018.03.083

    Article  Google Scholar 

  13. Yu, L., Ma, Y.: Loading rate and temperature dependence of flexural behavior in injection-molded glass fiber reinforced polypropylene composites. Compos. Part B-Eng. 161, 285–299 (2019). https://doi.org/10.1016/j.compositesb.2018.10.035

    Article  CAS  Google Scholar 

  14. Alwis, K.G.N.C., Burgoyne, C.J.: Time-Temperature superposition to determine the stress-rupture of aramid fibres. Appl. Compos. Mater. 13(4), 249–264 (2006). https://doi.org/10.1007/s10443-006-9017-8

    Article  CAS  Google Scholar 

  15. Li, K., Yan, S.L., Pan, W.F., Zhao, G.: Warpage optimization of fiber-reinforced composite injection molding by combining back propagation neural network and genetic algorithm. Int. J. Adv. Manuf. Technol. 90, 963–970 (2017). https://doi.org/10.1007/s00170-016-9409-3

    Article  Google Scholar 

  16. Bautu, E., Bautu, A., Luchian, H.: Symbolic regression on noisy data with genetic and gene expression programming. International Symposium on Symbolic & Numeric Algorithms for Scientific Computing. IEEE Computer Society. 321–324 (2005). https://doi.org/10.1109/SYNASC.2005.70

  17. Zhang, H.R., Hao, J., Lv, Y.G., Zhao, L.: Symbolic regression on noisy data with stepwise genetic programming algorithm. Appl. Mech. Mater. 530(531), 625–628 (2014). https://doi.org/10.4028/www.scientific.net/amm.530-531.625

    Article  Google Scholar 

  18. Yuan, C., Tang, C., Wen, Y., Zuo, J., Peng, J., Hu, J.: Convergency of genetic regression in data mining based on gene expression programming and optimized solution. Int. J. Comput. Appl. 28(4), 359–366 (2006). https://doi.org/10.1080/1206212X.2006.11441822

    Article  Google Scholar 

  19. Kalfat, R., Nazari, A., Al-Mahaidi, R., Sanjayan, J.: Genetic programming in the simulation of FRP-to-concrete patch-anchored joints. Compos. Struct. 138, 305–312 (2016). https://doi.org/10.1016/j.compstruct.2015.12.005

    Article  Google Scholar 

  20. Ebid, A.M., Deifalla, A.: Prediction of shear strength of FRP reinforced beams with and without stirrups using GP technique. Ain. Shams. Eng. J. 12(3), 2493–2510 (2021). https://doi.org/10.1016/j.asej.2021.02.006

    Article  Google Scholar 

  21. Murad, Y., Tarawneh, B., Ashteyat, A.: Prediction model for concrete carbonation depth using gene expression programming. Comput. Concrete. 26(6), 497–504 (2020). https://doi.org/10.12989/cac.2020.26.6.497

    Article  Google Scholar 

  22. Murad, Y., Ashteyat, A., Hunaifat, R.: Predictive model to the bond strength of FRP-to concrete under direct pullout using gene expression programming. J. Civ. Eng. Manage. 25(8), 773–784 (2019). https://doi.org/10.3846/jcem.2019.10798

    Article  Google Scholar 

  23. Iqbal, M., Zhao, Q., Zhang, D., Jalal, F.E., Jamal, A.: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct. 54(5), 190 (2021). https://doi.org/10.1617/s11527-021-01783-x

    Article  CAS  Google Scholar 

  24. Murad, Y., Tarawneh, A., Arar, F., Al-Zu’bi, A., Al-Ghwairi, A., Al-Jaafreh, A., Tarawneh, M.: Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Struct. 33, 3163–3172 (2021). https://doi.org/10.1016/j.istruc.2021.06.045

    Article  Google Scholar 

  25. Güneyisi, E.M., Nour, A.I.: Axial compression capacity of circular CFST columns transversely strengthened by FRP. Eng. Struct. 191, 417–431 (2019). https://doi.org/10.1016/j.engstruct.2019.04.056

    Article  Google Scholar 

  26. Murad, Y., Hunifat, R., AL-Bodour, W.: Interior reinforced concrete beam-to-column joints subjected to cyclic loading: shear strength prediction using gene expression programming. Case. Stud. Constr. Mat. 13, e00432 (2020). https://doi.org/10.1016/j.cscm.2020.e00432

    Article  Google Scholar 

  27. Murad, Y.: Predictive model for bidirectional shear strength of reinforced concrete columns subjected to biaxial cyclic loading. Eng. Struct. 244, 112781 (2021). https://doi.org/10.1016/j.engstruct.2021.112781

    Article  Google Scholar 

  28. Murad, Y.: Joint shear strength models for exterior RC beam-column connections exposed to biaxial and uniaxial cyclic loading. J. Build. Eng. 30, 101225 (2020). https://doi.org/10.1016/j.jobe.2020.101225

    Article  Google Scholar 

  29. Mansouri, I., Güneyisi, E.M., Mosalam, K.M.: Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming. Eng. Struct. 228, 111563 (2021). https://doi.org/10.1016/j.engstruct.2020.111563

    Article  Google Scholar 

  30. Hassani, M., Safi, M., Ardakani, R.R., Daryan, A.S.: Predicting fire resistance of SRC columns through gene expression programming. J. Struct. Fire. Eng. 12(2), 125–140 (2020). https://doi.org/10.1108/JSFE-04-2020-0013

    Article  Google Scholar 

  31. Beheshti Aval, S.B., Ketabdari, H., Asil Gharebaghi, S.: Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming. Struct. 12, 13–23 (2017). https://doi.org/10.1016/j.istruc.2017.07.002

    Article  Google Scholar 

  32. Tarawneh, A., Almasabha, G., Alawadi, R., Tarawneh, M.: Innovative and reliable model for shear strength of steel fibers reinforced concrete beams. Struct. 32, 1015–1025 (2021). https://doi.org/10.1016/j.istruc.2021.03.081

    Article  Google Scholar 

  33. Iqbal, M.F., Liu, Q.F., Azim, I., Zhu, X., Yang, J., Javed, M.F., Rauf, M.: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 384, 121322 (2020). https://doi.org/10.1016/j.jhazmat.2019.121322

    Article  CAS  Google Scholar 

  34. Jafari, S., Mahini, S.S.: Lightweight concrete design using gene expression programing. Constr. Build. Mater. 139, 93–100 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.120

    Article  Google Scholar 

  35. Gholampour, A., Gandomi, A.H., Ozbakkaloglu, T.: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr. Build. Mater. 130, 122–145 (2017). https://doi.org/10.1016/j.conbuildmat.2016.10.114

    Article  Google Scholar 

  36. Bouziadi, F., Boulekbache, B., Haddi, A., Hamrat, M., Djelal, C.: Finite element modeling of creep behavior of FRP-externally strengthened reinforced concrete beams. Eng. Struct. 204, 109908 (2020). https://doi.org/10.1016/j.engstruct.2019.109908

    Article  Google Scholar 

  37. Anand, A., Banerjee, P., Sahoo, D., Rathore, D.K., Prusty, R.K., Ray, B.C.: Effects of temperature and load on the creep performance of CNT reinforced laminated glass fiber/epoxy composites. Int. J. Mech. Sci. 150, 539–547 (2019). https://doi.org/10.1016/j.ijmecsci.2018.09.048

    Article  Google Scholar 

  38. Berardi, V.P., Perrella, M., Armentani, E., Cricrì, G.: Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites. Fatigue. Fract. Eng. M. 44(4), 1085–1095 (2021). https://doi.org/10.1111/ffe.13415

    Article  CAS  Google Scholar 

  39. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994). https://doi.org/10.1007/BF00175355

    Article  Google Scholar 

  40. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex. Syst. 13(2), 87–129 (2001). https://doi.org/10.48550/arXiv.cs/0102027

    Article  Google Scholar 

  41. Zhong, J.H., Ong, Y.S., Cai, W.T.: Self-learning gene expression programming. Ieee. T. Evolut. Comput. 20(1), 65–80 (2016). https://doi.org/10.1109/TEVC.2015.2424410

    Article  Google Scholar 

  42. Gao, Y.F., Yin, D.S.: A full-stage creep model for rocks based on the variable-order fractional calculus. Appl. Math. Model. 95(1), 435–446 (2021). https://doi.org/10.1016/j.apm.2021.02.020

    Article  Google Scholar 

  43. Milad, A., Hussein, S.H., Khekan, A.R., Rashid, M., Al-Msari, H., Tran, T.H.: Development of ensemble machine learning approaches for designing fiber-reinforced polymer composite strain prediction model. Eng. Comput. 38, 3625–3637 (2022). https://doi.org/10.1007/s00366-021-01398-4

    Article  Google Scholar 

  44. Sokairge, H., Elgabbas, F., Rashad, A., Elshafie, H.: Long-term creep behavior of basalt fiber reinforced polymer bars. Constr. Build. Mater. 260, 120437 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120437

    Article  CAS  Google Scholar 

  45. Liang, N., Zhu, S.R., Chen, J.Z., Fang, X.: Long-term behavior of GFRP pipes: optimizing the distribution of failure points during testing. Polym. Test. 48, 7–11 (2015). https://doi.org/10.1016/j.polymertesting.2015.08.011

    Article  CAS  Google Scholar 

  46. Benmokrane, B., Brown, Vicki L., Mohamed, K., Nanni, A., Rossini, M., Shield, C.: Creep-rupture limit for GFRP bars subjected to sustained loads. J. Compos. Constr. 23(6), 06019001 (2019). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000971

    Article  CAS  Google Scholar 

  47. Farooq, M., Banthia, N.: FRP fibre-cementitious matrix interfacial bond under time-dependent loading. Mater. Struct. 52, 109 (2019). https://doi.org/10.1617/s11527-019-1409-y

    Article  CAS  Google Scholar 

  48. Li, M., Zhang, H., Li, S., Zhu, W., Ke, Y.: Machine learning and materials informatics approaches for predicting transverse mechanical properties of unidirectional CFRP composites with microvoids. Mater. Design. 224, 111340 (2022). https://doi.org/10.1016/j.matdes.2022.111340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11902232).

Author information

Authors and Affiliations

Authors

Contributions

Hua Tan: Conceptualization; Formal analysis; Investigation; Methodology; Software; Visualization; Writing-original draft; Writing-review & editing. Sirong Zhu: Conceptualization; Supervision; Resources; Validation. Shilin Yan: Data curation; Methodology; Supervision; Project administration. Pin Wen: Validation; Funding acquisition. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Shilin Yan.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Zhu, S., Yan, S. et al. Predictive Model for Creep Behavior of Composite Materials Using Gene Expression Programming. Appl Compos Mater 30, 1003–1030 (2023). https://doi.org/10.1007/s10443-023-10109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10109-9

Keywords

Navigation