Skip to main content
Log in

An Experimental Characterisation on Rectangular Z-Pinned Parameters in the Dynamic Modal Responses of Reinforced Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A great deal of research has been carried out and demonstrates that through-thickness reinforcement in the form of z-pins can greatly improve the mechanical properties of carbon fiber composite laminates. The modal responses of composite laminates reinforced through the thickness with rectangular z-pin sizes and area density insertion design variables generated from the Design of Experiments (DOE) are studied with free and forced vibration tests being carried out. Although many studies have reported the use of experimental, statistical, numerical, and computational tools applied to composite structures, to date, very few have focused on the application of analysis of variance (ANOVA) to analyze the experimental data and artificial neural networks (ANN) as a technique to predict the modal responses of z-pinned composites. The experimental results indicated that, in most cases, there was an increase in the natural frequency, which highlighted the reduction, from approximately 60% to 70%, in the amplitude of vibration for all specimens with z-pin reinforcement in comparison to the unpinned. Furthermore, the experimental data compared with the statistical results pointed out that z-pins had a positive influence on increasing and decreasing natural frequency and forced vibration amplitude, respectively, of z-pinned composites compared to reinforced and trained ANNs, and the experimental data presented very good agreement with the experimental tests carried out in this investigation for predicting modal response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

DOE:

Design of experiments

RSM:

Response surface methodology

ANOVA:

Analysis of variance

FRF:

Frequency response function

FFT:

Fast Fourier transform

CCD:

Central composite design

ANN:

Artificial neural network

CFRP:

Carbon fiber reinforced polymer

UD:

Uni directional

CAI:

Compression after impact

QI:

Quasi-isotropic

CNT:

Carbon nanotubes

CNC:

Computer Numerical Control

MWCNT:

Multi-walled carbon nanotubes

VARTM:

Vacuum assisted resin transfer molding

2D:

Two dimensional

3D:

Three dimensional

R 2 adj :

Adjusted coefficient of determination

y :

Response variable

β :

Model constant

k :

Number of design parameters

x 1 :

Factor

x 2 :

Factor

e :

Random error term

ξ :

Damping ratio

η :

Loss factor or loss coefficient

ΔE :

Energy lost per radian

U max :

Potential energy at maximum displacement

ω r :

Resonance frequencies

a i :

Vibration amplitude

b i :

Vibration amplitude

ω di :

Damped natural frequency

x p :

Pin size

x d :

Pin area density

References

  1. Chandrashekhar, M., Ganguli, R.: Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int. J. Mech. Sci. 52(7), 874–891 (2010)

    Article  Google Scholar 

  2. Cui, H., Yasaee, M., Melro, A.R.: Dynamic inter-fibre failure of unidirectional composite laminates with through-thickness reinforcement. Compos. Sci. Technol. 176, 64–71 (2019)

    Article  CAS  Google Scholar 

  3. Yan, W., Liu, H.Y., Mai, Y.W.: Mode II delamination toughness of z-pinned laminates. Compos. Sci. Technol. 64(13–14), 1937–1945 (2004)

    Article  Google Scholar 

  4. Pardini, L.C.: Preformas para compósitos estruturais. Polímeros 10, 100–109 (2000)

    Article  CAS  Google Scholar 

  5. Partridge, I.K., Cartié, D.D.: Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance. Compos. A. Appl. Sci. Manuf. 36(1), 55–64 (2005)

    Article  Google Scholar 

  6. Pingkarawat, K., Mouritz, A.P.: Improving the mode I delamination fatigue resistance of composites using z-pins. Compos. Sci. Technol. 92, 70–76 (2014)

    Article  CAS  Google Scholar 

  7. Yasaee, M., Lander, J.K., Allegri, G., Hallett, S.R.: Experimental characterization of mixed mode traction–displacement relationships for a single carbon composite z-pin. Compos. Sci. Technol. 94, 123–131 (2014)

    Article  CAS  Google Scholar 

  8. Barbosa, L.C.M., Bortoluzzi, D.B., Ancelotti, A.C.: Analysis of fracture toughness in mode II and fractographic study of composites based on Elium® 150 thermoplastic matrix. Compos. B. Eng. 175, 107082 (2019)

    Article  CAS  Google Scholar 

  9. Gomes, G.F., de Almeida, F.A., da Cunha, S.S., Ancelotti, A.C.: An estimate of the location of multiple delaminations on aeronautical CFRP plates using modal data inverse problem. Int. J. Adv. Manuf. Technol. 99(5), 1155–1174 (2018)

    Article  Google Scholar 

  10. Bilisik, K.: Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites. J. Reinf. Plast. Compos. 29(8), 1173–1186 (2010)

    Article  CAS  Google Scholar 

  11. Bortoluzzi, D.B., Gomes, G.F., Hirayama, D., Ancelotti, A.C.: Development of a 3D reinforcement by tufting in carbon fiber/epoxy composites. Int. J. Adv. Manuf. Technol. 100(5–8), 1593–1605 (2019)

    Article  Google Scholar 

  12. Funari, M.F., Greco, F., Lonetti, P.: A cohesive finite element model based ALE formulation for z-pins reinforced multilayered composite beams. Procedia. Struct. Integr. 2, 452–459 (2016)

    Article  Google Scholar 

  13. Mohamed, G., Allegri, G., Yasaee, M., Hallett, S.R.: Cohesive element formulation for z-pin delamination bridging in fibre reinforced laminates. Int. J. Solids Struct. 132, 232–244 (2018)

    Article  Google Scholar 

  14. Kumar, N.J., Babu, P.R.: Analysis of mode I and mode II crack growth arrest mechanism with Z-fibre pins in composite laminated joint. Appl. Compos. Mater. 25(2), 365–379 (2018)

    Article  Google Scholar 

  15. Liao, B., Zhou, J., Ai, S., Lin, Y., Xi, L., Cao, Y., Xiao, D.: Comparison of laminate thickness on the low velocity impact behaviors for z-pinned composite laminates. Int. J. Mech. Sci. 204, 106567 (2021)

    Article  Google Scholar 

  16. Vazquez, J.T., Castanié, B., Barrau, J.J., Swiergiel, N.: Multi-level analysis of low-cost z-pinned composite joints: Part 2: Joint behaviour. Compos. A. Appl. Sci. Manuf. 42(12), 2082–2092 (2011)

    Article  Google Scholar 

  17. Zhang, B., Allegri, G., Yasaee, M., Hallett, S.R., Partridge, I.K.: On the delamination self-sensing function of z-pinned composite laminates. Compos. Sci. Technol. 128, 138–146 (2016)

    Article  CAS  Google Scholar 

  18. Cartié, D.D., Dell’Anno, G., Poulin, E., Partridge, I.K.: 3D reinforcement of stiffener-to-skin T-joints by z-pinning and tufting. Eng. Fract. Mech. 73(16), 2532–2540 (2006)

    Article  Google Scholar 

  19. Zhang, X., Li, Y., Chu, Q., Xiao, J.: Experimental study on the performance of twisted fiber reinforced composite z-pin, pp. 20–25. Proceedings of the 21th International Conference on Composite Materials, Xi’an, China (2017)

    Google Scholar 

  20. Hoffmann, J., Scharr, G.: Pull-out performance of rectangular z-pins in hot-cured carbon fiber reinforced laminates. Compos. Struct. 186, 62–67 (2018)

    Article  Google Scholar 

  21. Knaupp, M., Baudach, F., Franck, J., Scharr, G.: Impact and post-impact properties of cfrp laminates reinforced with rectangular z-pins. Compos. Sci. Technol. 87, 218–223 (2013)

    Article  CAS  Google Scholar 

  22. Grigoriou, K., Ladani, R.B., Mouritz, A.P.: Electrical properties of multifunctional z-pinned sandwich composites. Compos. Sci. Technol. 170, 60–69 (2019)

    Article  CAS  Google Scholar 

  23. Ravindran, A.R., Ladani, R.B., Wang, C.H., Mouritz, A.P.: Synergistic mode II delamination toughening of composites using multi-scale carbon-based reinforcements. Compos. A. Appl. Sci. Manuf. 117, 103–115 (2019)

    Article  CAS  Google Scholar 

  24. Fan, W., Dong, J., Wei, B., Zhi, C., Yu, L., Xue, L., Li, L.: Fast and accurate bending modulus prediction of 3D woven composites via experimental modal analysis. Polym. Test. 78, 105938 (2019)

    Article  Google Scholar 

  25. Abdellah, M.Y., Mohamed, A.F., Hasan, M.K.: Characteristic analysis: Vibration behaviour of composite laminated structures compared to monotonic materials. IJMME-IJENS. 19, 57–69 (2019)

    Google Scholar 

  26. De Borbón, F., Ambrosini, D., Curadelli, O.: Damping response of composites beams with carbon nanotubes. Compos. B. Eng. 60, 106–110 (2014)

    Article  Google Scholar 

  27. Bortoluzzi, D.B., Oliver, G.A., Ancelotti Junior, A.C., Gomes, G.F.: An experimental dynamic analysis of z-pinned unidirectional CFRP beams. Compos. Struct. 273, 114237 (2021)

    Article  CAS  Google Scholar 

  28. Barbosa, L.C.M., Gomes, G., Junior, A.C.A.: Prediction of temperature-frequency-dependent mechanical properties of composites based on thermoplastic liquid resin reinforced with carbon fibers using artificial neural networks. Int. J. Adv. Manuf. Technol. 105(5), 2543–2556 (2019)

    Article  Google Scholar 

  29. Di Benedetto, R.M., Botelho, E.C., Janotti, A., Junior, A.A., Gomes, G.F.: Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites. Compos. Struct. 257, 113131 (2021)

    Article  Google Scholar 

  30. Parikh, H.H., Gohil, P.P.: Experimental determination of tribo behavior of fiber-reinforced composites and its prediction with artificial neural networks. In: Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 301–320. Woodhead Publishing (2019)

    Chapter  Google Scholar 

  31. Lepšík, P., Kulhavý, P.: Design optimization of composite parts using doe method, pp. 200–205. 58th ICMD 2017 (2017)

    Google Scholar 

  32. Almeida, J.H.S., Jr., Angrizani, C.C., Botelho, E.C., Amico, S.C.: Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites. Mater. Des. 1980–2015(65), 789–795 (2015)

    Article  Google Scholar 

  33. Ibrahim, Y., Melenka, G.W., Kempers, R.: Flexural properties of three-dimensional printed continuous wire polymer composites. Mater. Sci. Technol. 35(12), 1471–1482 (2019)

    Article  CAS  Google Scholar 

  34. Bortoluzzi, D.B., Aparecida Diniz, C., Luiz Junho Pereira, J., Francis Ribeiro, R., Jr., Ferreira Gomes, G., Carlos Ancelotti, A., Jr.: On the influence of rectangular z-pins parameters on mode II delamination resistance of through the thickness reinforced composites. Compos. Struct. p. 116509. Elsevier BV (2022). https://doi.org/10.1016/j.compstruct.2022.116509

  35. Pegorin, F., Pingkarawat, K., Daynes, S., Mouritz, A.P.: Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites. Compos. B. Eng. 78, 298–307 (2015)

    Article  CAS  Google Scholar 

  36. Koh, T.M., Isa, M.D., Feih, S., Mouritz, A.P.: Experimental assessment of the damage tolerance of z-pinned T-stiffened composite panels. Compos. B. Eng. 44(1), 620–627 (2013)

    Article  CAS  Google Scholar 

  37. Mouritz, A.P.: Review of z-pinned composite laminates. Compos. A. Appl. Sci. Manuf. 38(12), 2383–2397 (2007)

    Article  Google Scholar 

  38. Mouritz, A.P.: Review of z-pinned laminates and sandwich composites. Compos. A. Appl. Sci. Manuf. 139, 106128 (2020)

    Article  Google Scholar 

  39. Kostopoulos, V., Sarantinos, N., Tsantzalis, S.: Review of through-the-thickness reinforced z-pinned composites. J. Compos. Sci. 4(1), 31 (2020)

    Article  CAS  Google Scholar 

  40. Vazquez, J.T., Castanié, B., Barrau, J.J., Swiergiel, N.: Multi-level analysis of low-cost z-pinned composite joints: Part 1: Single z-pin behaviour. Compos. A. Appl. Sci. Manuf. 42(12), 2070–2081 (2011)

    Article  Google Scholar 

  41. Fert, M.M.: An investigation of the mechanical performance of z-pin reinforced composites. Imperial College London (2016). (PhD Thesis)

    Google Scholar 

  42. Ravindran, A.R., Ladani, R.B., Wang, C.H., Mouritz, A.P.: Hierarchical mode I and mode II interlaminar toughening of z-pinned composites using 1D and 2D carbon nanofillers. Compos. A. Appl. Sci. Manuf. 124, 105470 (2019)

    Article  CAS  Google Scholar 

  43. Loh, T.W., Ladani, R.B., Ravindran, A., Das, R., Kandare, E., Mouritz, A.P.: Z-Pinned composites with combined delamination toughness and delamination self-repair properties. Compos. A. Appl. Sci. Manuf. 149, 106566 (2021)

    Article  CAS  Google Scholar 

  44. Werdine, D., Oliver, G.A., de Almeida, F.A., de Lourdes Noronha, M., Gomes, G.F.: Analysis of the properties of the self-compacting concrete mixed with tire rubber waste based on design of experiments. Structures. 33, 3461–3474 (2021)

    Article  Google Scholar 

  45. Mouritz, A.P., Chang, P., Isa, M.D.: Z-pin composites: Aerospace structural design considerations. J. Aerosp. Eng. 24(4), 425–432 (2011)

    Article  Google Scholar 

  46. Haykin, S.: Neural networks and learning machines. 3rd edition. Pearson Education India (2009)

    Google Scholar 

  47. Diniz, C.A., Cunha, S.S., Gomes, G.F., Ancelotti, A.C.: Optimization of the layers of composite materials from neural networks with Tsai–Wu failure criterion. J. Fail. Anal. Prev. 19(3), 709–715 (2019)

    Article  Google Scholar 

  48. Ribeiro Junior, F.R., de Almeida, F.A., Gomes, G.F.: Fault classification in three-phase motors based on vibration signal analysis and artificial neural networks. Neural. Comput. Appl. 32(18), 15171–15189 (2020)

    Article  Google Scholar 

  49. Ribeiro Junior, R.F., Methodoly, I.A.D.S.A., Campos, M.M., Teixeira, C.E., da Silva, L.E.B., Gomes, G.F.: Fault detection and diagnosis in electric motors using 1d convolutional neural networks with multi-channel vibration signals. Measurement. 190, 110759 (2022)

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the Brazilian agency CAPES (Coordenacão de Aperfeicoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and FAPEMIG (Fundacão de Amparo à Pesquisa do Estado de Minas Gerais-APQ-00385-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Ferreira Gomes.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortoluzzi, D.B., Diniz, C.A., Ribeiro Junior, R.F. et al. An Experimental Characterisation on Rectangular Z-Pinned Parameters in the Dynamic Modal Responses of Reinforced Composites. Appl Compos Mater 30, 579–605 (2023). https://doi.org/10.1007/s10443-023-10102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10102-2

Keywords

Navigation