Skip to main content

Advertisement

Log in

Experimental and Finite Element Simulation of Torsional Performance of Skin-core Carbon Fiber-reinforced Composite Rod

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

For decades, carbon fiber-reinforced composite rods (CFRPRs) have exhibited the advantages of high specific strength, high specific modulus, corrosion resistance and low density, which are widely applied in the aerospace and automotive industries. In this study, a type of skin-core composite rod (SCCR) was manufactured through vacuum-assisted resin infusion technology, and the skin is a two-dimensional (2D) carbon fiber braided tube while the core is unidirectional carbon fiber. Both torsion experiment and full-size mesoscopic numerical simulation were conducted to investigate the special structure effect of SCCR. The results demonstrate that ductile failure mechanism dominates in SCCR, and the extension cracking occurs in the matrix along the direction of braiding yarn while the braiding yarns mainly experience tensile and shear damage. Under the same torsion angle, the damage degree of the resin structure (RS) and braiding structure (BS) is intensified with the braiding angle. With the increase of the braiding angle, the maximum stress of the rods increases, while the BS failure torsion angle decreases. The average stress of the middle section of BS is 234.08, 239.78, and 257.93 MPa corresponding to the braiding angle of 24°, 27°, and 30°, and the critical failure torsion angle is 209°, 199°, and 189°. The path stress of the braiding yarn fluctuates at 5 MPa and the position of the stress fluctuation increases with the braiding angle. This study reveals the unique bearing and damage mechanisms of skin-core composite rod, and provides the theoretical and experimental basis for the design of composite rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang, J., et al.: Temperature dependent ultimate tensile strength model for short fiber reinforced metal matrix composites. Compos. Struct. 267, 113890 (2021). https://doi.org/10.1016/j.compstruct.2021.113890

    Article  CAS  Google Scholar 

  2. Grabow, M., et al.: Influence of the manufacturing process on the interlaminar tensile strength of thick unidirectional continuous epoxy/carbon fibre composites. Compos. A. Appl. Sci. Manuf. 154, 11 (2022). https://doi.org/10.1016/j.compositesa.2021.106754

    Article  CAS  Google Scholar 

  3. Zhang, X.J., Shi, Y.C., Li, Z.X.: Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates. Compos. B. Eng. 164, 524–536 (2019). https://doi.org/10.1016/j.compositesb.2019.01.067

    Article  CAS  Google Scholar 

  4. Pan, Y.F., Yan, D.M.: Study on the durability of GFRP BCrs and carbon/glass hybrid fiber reinforced polymer (HFRP) BCrs aged in alkaline solution. Compos. Struct. 261, 14 (2021)

    Article  Google Scholar 

  5. Badie, M.A., Mahdi, E., Hamouda, A.M.S.: An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Mater. Des. 32(3), 1485–1500 (2011). https://doi.org/10.1016/j.matdes.2010.08.042

    Article  CAS  Google Scholar 

  6. Beylergil, B.: Design and discrete optimization of hybrid aluminum/composite drive shafts for automotive industry. J. Eng. Res. 9(3B), 248–263 (2021)

    Article  CAS  Google Scholar 

  7. Bilalis, E.P., Keramidis, M.S., Tsouvalis, N.G.: Structural design optimization of composite materials drive shafts. Mar. Struct. 84, 15 (2022). https://doi.org/10.1016/j.marstruc.2022.103194

    Article  Google Scholar 

  8. Sun, Z.Y., et al.: Vibration characteristics of carbon-fiber reinforced composite drive shafts fabricated using filament winding technology. Compos. Struct. 241, 12 (2020). https://doi.org/10.1016/j.compstruct.2019.111725

    Article  Google Scholar 

  9. Hao, W.F., et al.: Study on the torsion behavior of 3-D braided composite shafts. Compos. Struct. 229, 9 (2019). https://doi.org/10.1016/j.compstruct.2019.111384

    Article  Google Scholar 

  10. Kim, T.Y., et al.: Vibration characteristics of filament wound composite tubes applied to the intermediate shaft in ship propulsion system. Mod. Phys. Lett. B. 33(14–15), 5 (2019)

    Google Scholar 

  11. Tariq, M., Nisar, S., Shah, A., Mairaj, T., Akbar, S., Khan, M.A., et al.: Effect of carbonfiber winding layer on torsional characteristics offilament wound composite shafts. J. Braz. Soc. Mech. Sci. Eng. 40, 198 (2018)

    Article  Google Scholar 

  12. Zhao, G.Q., et al.: Clustering of AE signals collected during torsional tests of 3D braiding composite shafts using PCA and FCM. Compos. B. Eng. 161, 547–554 (2019). https://doi.org/10.1016/j.compositesb.2018.12.145

    Article  CAS  Google Scholar 

  13. Guo, R., et al.: Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1974620

    Article  Google Scholar 

  14. Naito, K.: Interfacial mechanical properties of carbon/glass hybrid thermoplastic epoxy composite rods. Compos. Struct. 257, 11 (2021). https://doi.org/10.1016/j.compstruct.2020.113129

    Article  CAS  Google Scholar 

  15. Wang, C.G., Tian, W.P., Tang, M.: Study on Mechanical Properties and Failure Mechanism of Axial Braided C/C Composite. Int. J. Aerosp. Eng. 2021, 12 (2021). https://doi.org/10.1155/2021/2520598

    Article  Google Scholar 

  16. Misri, S., et al.: Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Mater. Des. 65, 953–960 (2015). https://doi.org/10.1016/j.matdes.2014.09.073

    Article  CAS  Google Scholar 

  17. Jiang, Q., et al.: Composite helical spring with skin-core structure: Structural design and compression property evaluation. Polym. Compos. 42(3), 1292–1304 (2021). https://doi.org/10.1002/pc.25901

    Article  CAS  Google Scholar 

  18. Guo, Q., et al.: Constitutive models for the structural analysis of composite materials for the finite element analysis: A review of recent practices. Compos. Struct. 260, 14 (2021). https://doi.org/10.1016/j.compstruct.2020.113267

    Article  Google Scholar 

  19. Zhou, J.J., Wen, P.H., Wang, S.N.: Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact. Compos. Struct. 225, 13 (2019). https://doi.org/10.1016/j.compstruct.2019.111113

    Article  Google Scholar 

  20. He, C.W., et al.: A multiscale elasto-plastic damage model for the nonlinear behavior of 3D braided composites. Compos. Sci. Technol. 171, 21–33 (2019). https://doi.org/10.1016/j.compscitech.2018.12.003

    Article  CAS  Google Scholar 

  21. Hao, W.F., et al.: A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts. Appl. Compos. Mater. 25(3), 619–633 (2018)

    Article  Google Scholar 

  22. Qi, L.L., et al.: Effect of reinforced fibers on the vibration characteristics of fibers reinforced composite shaft tubes with metal flanges. Compos. Struct. 275, 10 (2021). https://doi.org/10.1016/j.compstruct.2021.114460

    Article  CAS  Google Scholar 

  23. Ben Arab, S., et al.: A finite element BCsed on Equivalent Single Layer Theory for rotating composite shafts dynamic analysis. Compos. Struct. 178, 135–144 (2017). https://doi.org/10.1016/j.compstruct.2017.06.052

    Article  Google Scholar 

  24. He, B., et al.: Unit cell modeling on torsion damage behavior of a novel three-dimensional integrated multilayer fabric-reinforced composite tubular structure. Text. Res. J. 89(19–20), 4253–4264 (2019). https://doi.org/10.1177/0040517519832837

    Article  CAS  Google Scholar 

  25. Yefa, H., et al.: Material design and failure experiment of a carbon fibre reinforced plastics drive shaft. Mater. Res. Innov. 19, 458–463 (2015). https://doi.org/10.1179/1432891714Z.0000000001131

    Article  CAS  Google Scholar 

  26. Ganguly, K., Roy, H.: Modelling and analysis of viscoelastic laminated composite shaft: an operator-BCsed finite element approach. Arch. Appl. Mech. 91(1), 343–362 (2021)

    Article  Google Scholar 

  27. Karihaloo, B.L., Xiao, Q.Z., Wu, C.C.: Homogenization-BCsed multivariable element method for pure torsion of composite shafts. Comput. Struct. 79(18), 1645–1660 (2001). https://doi.org/10.1016/S0045-7949(01)00091-8

    Article  Google Scholar 

  28. Ayranci, C., Carey, J.P.: Effect of Diameter in Predicting the Elastic Properties of 2D Braided Tubular Composites. J. Compos. Mater. 44(16), 2031–2044 (2010). https://doi.org/10.1177/0021998310369599

    Article  CAS  Google Scholar 

  29. Hancioglu, M., Sozer, E.M., Advani, S.G.: Comparison of in-plane resin transfer molding and vacuum-assisted resin transfer molding “effective” permeabilities BCsed on mold filling experiments and simulations. J. Reinf. Plast. Compos. 39(1–2), 31–44 (2020). https://doi.org/10.1177/0731684419868015

    Article  CAS  Google Scholar 

  30. Gu, Y.H., et al.: Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography. Compos. Struct. 256, 11 (2021). https://doi.org/10.1016/j.compstruct.2020.113020

    Article  Google Scholar 

  31. Endruweit, A., Zeng, X., Matveev, M., Long, A.C.: Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements. Compos. A. Appl. Sci. Manuf. 104, 139–150 (2018). https://doi.org/10.1016/j.compositesa.2017.10.020

    Article  CAS  Google Scholar 

  32. Wu, L.W., et al.: Short Beam Shear Behavior and Failure Characterization of Hybrid 3D Braided Composites Structure with X-ray Micro-Computed Tomography. Polymers. 12(9), 19 (2020). https://doi.org/10.3390/polym12091931

    Article  CAS  Google Scholar 

  33. Huang, Z.M.: A bridging model prediction of the ultimate strength of composite laminates subjected to biaxial loads. Compos. Sci. Technol. 64(3–4), 395–448 (2004). https://doi.org/10.1016/S0266-3538(03)00220-3

    Article  CAS  Google Scholar 

  34. Duarte, A.P.C., Saez, A.D., Silvestre, N.: Comparative study between XFEM and Hashin damage criterion applied to failure of composites. Thin. Walled. Struct. 115, 277–288 (2017). https://doi.org/10.1016/j.tws.2017.02.020

    Article  Google Scholar 

  35. Rohwer, K.: Predicting fiber composite damage and failure. J. Compos. Mater. 49(21), 2673–2683 (2015). https://doi.org/10.1177/0021998314553885

    Article  Google Scholar 

  36. Fotouhi, M., et al.: High performance quasi -isotropic thin -ply carbon/glass hybrid composites with pseudo -ductile behaviour loaded off -axis. Compos. Struct. 247, 9 (2020). https://doi.org/10.1016/j.compstruct.2020.112444

    Article  Google Scholar 

  37. Mutasher, S.A., et al.: Static and dynamic characteristics of a hybrid aluminium/composite drive shaft. Proc. Inst. Mech. Eng. L. J. Mater. Des. Appl. 221(L2), 63–75 (2007). https://doi.org/10.1243/14644207JMDA63

    Article  Google Scholar 

  38. Chai, Y., et al.: Damage evolution in braided composite tubes under torsion studied by in-situ X-ray computed tomography. Compos. Sci. Technol. 188, 9 (2020). https://doi.org/10.1016/j.compscitech.2019.107976

    Article  CAS  Google Scholar 

  39. Hiermer, T., Schmitt-Thomas, K.G., Yang, Z.G.: Mechanical properties and failure behaviour of cylindrical CFRP-implant-rods under torsion load. Compos. A. Appl. Sci. Manuf. 29(11), 1453–1461 (1998). https://doi.org/10.1016/S1359-835X(98)00027-X

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province (grant number MTC2021-02), Natural Science Foundation of Tianjin (Grant numbers 19JCYBJC18300) and the Program for Innovative Research Team at the University of Tianjin (TD13-5043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyan Wu or Liwei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Chen, H., Chen, L. et al. Experimental and Finite Element Simulation of Torsional Performance of Skin-core Carbon Fiber-reinforced Composite Rod. Appl Compos Mater 30, 1123–1140 (2023). https://doi.org/10.1007/s10443-022-10090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10090-9

Keywords

Navigation