Skip to main content
Log in

Development of a Damage Mechanics Model for Fatigue Life Prediction of 2.5D Woven Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A continuum damage model (CDM) is proposed to predict the fatigue life of 2.5D woven composites (2.5DWC) with conformal or voxel meshing. Three independent damage variables of yarn fiber, yarn matrix, and matrix are defined to establish the constitutive relationship of woven composites with damage. The strain energy density, damage driving force, and damage evolution equation of material components are derived in the damage thermodynamics method, and the component correction stress is introduced to eliminate the effect of different meshing methods on fatigue life prediction. The model is implemented in ANSYS with the APDL language to simulate the fatigue failure process of 2.5DWC. The results show that the predicted fatigue life with conformal or voxel meshing differs by only 4.5% and shows agreement with the relevant experimental fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(U_{p}\) :

Displacement in the x, y, and z directions

\({{\varvec{\upvarepsilon}}}_{c}\) \({{\varvec{\upvarepsilon}}}_{c}^{p}\) :

Strain and plastic strain tensors

\(V_{a}\) :

Total volume of the full-cell model

\({\mathbf{S}}_{r}\) :

Flexibility matrix of yarns and matrix

\(E_{r}\) \(G_{r}\) :

Elastic and shear modulus of yarns and matrix

\(\eta_{12}\) \(\eta_{22}\) :

Stiffness correction factors

\(X_{c}\) :

Strength of material components

\(D_{c}\) :

Damage variable of material components

\(F\) :

Dissipation potential function

\(T\) :

Ambient temperature

\(Y_{c}\) :

Damage driving force of material components

\(A_{c}\) \(B_{c}\) \(C_{c}\) :

Unknown parameters of damage evolution equation

\(\sigma_{e,c}\) :

Component correction stress

\({{\varvec{\upxi}}}_{c}\) :

Back strain tensor of material components

\(\gamma_{c}\) :

Damage accumulated plastic strain

\(\Delta L_{q}\) :

Length of the geometric model

\(L_{q}^{A}\) \(L_{q}^{B}\) :

Node coordinates of opposite planes

\(N_{a}\) :

Total number of elements in the full-cell model

\(E_{c}^{D}\) :

Elastic modulus of damaged components

\(\nu_{r}\) :

Poisson’s ratio of yarns and matrix

\(\alpha\) \(\beta\) :

Shear factors

\(V_{f}\) :

Fiber volume fraction

\(\psi\) :

Helmholtz free energy

\(W\) :

Strain energy density

\(\rho\) :

Material density

\({{\varvec{\upsigma}}}_{c}\) :

Stress tensor of material components

\(N_{c}\) :

Fatigue life of material components

\(\phi_{o,c}\) :

Model correction factors

\({{\varvec{\upchi}}}_{c}\) :

Back stress tensor of material components

\(\kappa_{c}\) :

Damage cumulative plastic stress

References

  1. Rana, S., Fangueiro, R.: Advanced Composite Materials for Aerospace Engineering. Woodhead, Combridge (2016)

    Google Scholar 

  2. Saleh, M.N., Soutis, C.: Recent advancements in mechanical characterisation of 3D woven composite-s. Mech. Adv. Mater. Mod. Process. 3, 1–17 (2017). https://doi.org/10.1186/s40759-017-0027-z

    Article  Google Scholar 

  3. Wei, T., Zhu, P., Wang, D., Zhao, C., Zhao, L.: Progressive damage modelling and experimental investigation of three-dimensional orthogonal woven composites with tilted binder. J. Ind. Text. 50, 70–97 (2019). https://doi.org/10.1177/1528083718821888

    Article  CAS  Google Scholar 

  4. Zhou, Y., Cui, H., Wen, W.: Mechanical behavior of 3D woven variable thickness composite plate u-nder tensile loading. Fiber. Polym. 23, 819–826 (2022). https://doi.org/10.1007/s12221-022-3251-z

    Article  Google Scholar 

  5. Shi, D., Teng, X., Jing, X., Lyu, S., Yang, X.: A multi-scale stochastic model for damage analysis and performance dispersion study of a 2.5D fiber-reinforced ceramic matrix composites. Compos. Struct. 248, 112549 (2020). https://doi.org/10.1016/j.compstruct.2020.112549

    Article  Google Scholar 

  6. Dai, S., Cunningham, P.R.: Multi-scale damage modelling of 3D woven composites under uni-axial tension. Compos. Struct. 142, 298–312 (2016). https://doi.org/10.1016/j.compstruct.2016.01.103

    Article  Google Scholar 

  7. Lu, H., Guo, L., Liu, G., Zhong, S., Pan, S.: Progressive damage investigation of 2.5D woven comp-osites under quasi-static tension. Acta. Mech. 230, 1323–1336 (2019). https://doi.org/10.1007/s00707-017-2024-z

    Article  Google Scholar 

  8. Zhang, D., Chen, L., Wang, Y., Sun, Y., Jia, N., Qian, K.: Finite element analysis of warp-reinforced 2.5D woven composites based on a meso-scale voxel model under compression loading. Appl. Compos. Mater. 24, 911–929 (2017). https://doi.org/10.1007/s10443-016-9565-5

    Article  Google Scholar 

  9. Zhang, D., Chen, L., Wang, Y., Zhang, L., Zhang, Y., Yu, K., Lu, X., Sun, J., Xiao, X., Qian, K.: Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model. J. Mater. Sci. 52, 6814–6836 (2017). https://doi.org/10.1007/s10853-017-0921-0

    Article  CAS  Google Scholar 

  10. Green, S.D., Matveev, M.Y., Long, A.C., Ivanov, D., Hallett, S.R.: Mechanical modelling of 3D wov-en composites considering realistic unit cell geometry. Compos. Struct. 118, 284–293 (2014). https://doi.org/10.1016/j.compstruct.2014.07.005

    Article  Google Scholar 

  11. Guo, J., Wen, W., Zhang, H., Cui, H., Song, J.: Mechanical properties prediction of 2.5D woven co-mposites via voxel-mesh full-cell model. Fiber. Polym. 22, 1899–1914 (2021). https://doi.org/10.1007/s12221-021-0153-4

    Article  Google Scholar 

  12. Zheng, T., Guo, L., Tang, Z., Wang, T., Li, Z.: Comparison of progressive damage simulation of 3D woven composites between voxel and conformal discretization models. Mech. Mater. 158, 103860 (2021). https://doi.org/10.1016/j.mechmat.2021.103860

    Article  Google Scholar 

  13. Xu, J., Lomov, S.V., Verpoest, I., Daggumati, S., Paepegem, W.V., Degrieck, J.: A comparative study of twill weave reinforced composites under tension-tension fatigue loading: Experiments and meso-modelling. Compos. Struct. 135, 306–315 (2016). https://doi.org/10.1016/j.compstruct.2015.09.005

    Article  Google Scholar 

  14. Aoki, R., Higuchi, R., Yokozeki, T.: Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models. Int. J. Fatig. 143, 106015 (2021). https://doi.org/10.1016/j.ijfatigue.2020.106015

    Article  CAS  Google Scholar 

  15. Xu, J., Lomov, S.V., Verpoest, I., Daggumati, S., Paepegem, W.V., Degrieck, J.: A progressive damage model of textile composites on meso-scale using finite element method: Fatigue damage analysis. Comput. Struct. 152, 96–112 (2015). https://doi.org/10.1016/j.compstruc.2015.02.005

    Article  Google Scholar 

  16. Califano, A., Aversano, R.D.: Theoretical approach to the study of fatigue of composites under spec-trum loading. AIP. Conf. Proc. 1981, 020143 (2018). https://doi.org/10.1063/1.5046005

    Article  CAS  Google Scholar 

  17. Califano, A., Amore, A.D.: Analysis of a phenomenological model for fatigue of composite materials. AIP. Conf. Proc. 2196, 020044 (2019). https://doi.org/10.1063/1.5140317

    Article  Google Scholar 

  18. Califano, A., Grassia, L., Amore, A.D.: Fatigue of composite materials subjected to variable loadings. J. Mater. Eng. Perform. 28, 6538–6543 (2019). https://doi.org/10.1007/s11665-019-04373-9

    Article  CAS  Google Scholar 

  19. Amore, A.D., Califano, A., Grassia, L.: Modelling the loading rate effects on the fatigue response of composite materials under constant and variable frequency loadings. Int. J. Fatig. 150, 106338 (2021). https://doi.org/10.1016/j.ijfatigue.2021.106338

    Article  CAS  Google Scholar 

  20. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials, part II: material characterization and model verification. J. Compos. Mater. 34, 1081–1116 (2000). https://doi.org/10.1177/002199830003401302

    Article  Google Scholar 

  21. Krishnan, A., Conway, A., Xiao, X.: Assessment of a progressive fatigue damage model for AS4/3501-6 carbon fiber/epoxy composites using digital image correlation. Appl. Compos. Mater. 26, 1227–1246 (2019). https://doi.org/10.1007/s10443-019-09777-3

    Article  Google Scholar 

  22. Song, J., Wen, W., Cui, H.: Fatigue life prediction model of 2.5D woven composites at various temperatures. Chin. J. Aeronaut. 31, 310–329 (2018). https://doi.org/10.1016/j.cja.2017.12.006

    Article  Google Scholar 

  23. Wan, A.S., Xu, Y.G., Xue, L.H., Xu, M.R., Xiong, J.J.: Finite element modeling and fatigue life pr-ediction of helicopter composite tail structure under multipoint coordinated loading spectrum. Compos. Struct. 255, 112900 (2021). https://doi.org/10.1016/j.compstruct.2020.112900

    Article  Google Scholar 

  24. Mahmoudi, A., Mohammadi, B., Toudeshky, H.H.: Damage behaviour of laminated composites during fatigue loading. Fatigue. Fract. Eng. Mater. Struct. 43, 698–710 (2020). https://doi.org/10.1111/ffe.13152

    Article  Google Scholar 

  25. Hohe, J., Gall, M., Fliegener, S., Hamid, Z.M.A.: A continuum damage mechanics model for fatigu-e and degradation of fiber reinforced materials. J. Compos. Mater. 54, 2837–2852 (2020). https://doi.org/10.1177/0021998320904142

    Article  Google Scholar 

  26. Llobet, J., Maimi, P., Essa, Y., Martin, F.: A continuum damage model for composite laminates: Par-t III-Fatigue. Mech. Mater. 153, 103659 (2021). https://doi.org/10.1016/j.mechmat.2020.103659

    Article  Google Scholar 

  27. Mohammad, N., Peyman, G.: Probability fatigue life prediction of pin-loaded laminated composites by continuum damage mechanics-based Monte Carlo simulation. Compos. Commun. 32, 101161 (2022). https://doi.org/10.1016/j.coco.2022.101161

    Article  Google Scholar 

  28. Shi, W., Hu, W., Zhang, M., Meng, Q.: A damage mechanics model for fatigue life prediction of fi-ber reinforced polymer composite lamina. Acta. Mech. Solida. Sin. 24, 399–410 (2011). https://doi.org/10.1016/S0894-9166(11)60040-2

    Article  Google Scholar 

  29. Zhang, W., Zhou, Z., Scarpa, F., Zhao, S.: A fatigue damage meso-model for fiber-reinforced composites with stress ratio effect. Mater. Des. 107, 212–220 (2016). https://doi.org/10.1016/j.matdes.2016.06.040

    Article  CAS  Google Scholar 

  30. Mohammadi, B., Mahmoudi, A.: Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach. Theor. Appl. Fract. Mech. 95, 18–27 (2018). https://doi.org/10.1016/j.tafmec.2018.02.012

    Article  Google Scholar 

  31. Peyman, G., Mohammad, A.F., Mohammad, A.K.: Stochastic fatigue life prediction of fiber-reinforced laminated composites by continuum damage mechanics-based damage plastic model. Int. J. Fatig. 152, 106456 (2021). https://doi.org/10.1016/j.ijfatigue.2021.106456

    Article  Google Scholar 

  32. Song, J., Wen, W., Cui, H., Liu, H., Xu, Y.: Effects of temperature and fiber volume fraction on mechanical properties of T300/QY8911-IV composites. J. Reinf. Plast. Comp. 34, 157–172 (2015). https://doi.org/10.1177/0731684414565939

    Article  CAS  Google Scholar 

  33. Baere, I.D., Paepegem, W.V., Quaresimin, M., Degrieck, J.: On the tension-tension fatigue behaviour of a carbon reinforced thermoplastic part I: limitations of the ASTM D3039/D3479 standard. Polym. Test. 30, 625–632 (2011)

    Article  Google Scholar 

  34. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume el-ements of composites and applications. Int. J. Solids. Struct. 40, 1907–1921 (2003). https://doi.org/10.1016/S0020-7683(03)00024-6

    Article  Google Scholar 

  35. Affdl, J., Halpin, C., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  36. Chaboche, J.L., Lesne, P.M.: A non-linear continuous fatigue damage model. Fatigue. Fract. Eng. Mater. Struct. 11, 1–17 (1988). https://doi.org/10.1111/j.1460-2695.1988.tb01216.x

    Article  Google Scholar 

  37. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. Trans. Asme. J. Eng. Mater. Technol. 107, 83–89 (1985). https://doi.org/10.1115/1.3225775

    Article  Google Scholar 

  38. Mohammadi, B., Fazlali, B., Majd, D.S.: Development of a continuum damage model for fatigue lif-e prediction of laminated composites. Compos. A. Appl. S. 93, 163–176 (2017). https://doi.org/10.1016/j.compositesa.2016.11.021

    Article  CAS  Google Scholar 

  39. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980). https://doi.org/10.1115/1.3153664

    Article  Google Scholar 

  40. Song, J., Wen, W., Cui, H., Zhang, H., Xu, Y.: Finite element analysis of 2.5D woven composites, part II: damage behavior simulation and strength prediction. Appl. Compos. Mater. 23, 45–69 (2016). https://doi.org/10.1007/s10443-015-9449-0

    Article  CAS  Google Scholar 

  41. Song, J., Wen, W., Cui, H.: Fatigue behaviors of 2.5D woven composites at ambient and un-ambien-t temperatures. Compos. Struct. 166, 77–86 (2017). https://doi.org/10.1016/j.compstruct.2017.01.055

    Article  Google Scholar 

Download references

Funding

This work was supported by National Science and Technology Major Project (2017-IV-0007–0044) and National Natural Science Foundation of China (52175142).

Author information

Authors and Affiliations

Authors

Contributions

Nan Wang performed the data analyses and wrote the manuscript. Weidong Wen contributed significantly to analysis and manuscript preparation. Hongjian Zhang helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Nan Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wen, W. & Zhang, H. Development of a Damage Mechanics Model for Fatigue Life Prediction of 2.5D Woven Composites. Appl Compos Mater 30, 185–205 (2023). https://doi.org/10.1007/s10443-022-10079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10079-4

Keywords

Navigation