Skip to main content
Log in

A Novel Micromechanical Model Based on the Rule of Mixtures to Estimate Effective Elastic Properties of Circular Fiber Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper proposes a novel model to estimate the effective elastic properties of unidirectional composites with circular cross section fibers: VSPKc. Finite element method (FEM) and experimental data are employed as reference solutions in order to verify the model capability to estimate the elastic properties. Experimental data considers a set of 126 tests compiled from the literature. In addition, predictions of two alternative analytical models are evaluated to highlight the advantages of the proposed model: the classical Rule of Mixtures (ROM) and a ROM-based model with octagonal cross section fibers. Results show that the VSPKc model presents the best estimations compared with either FEM or experimental data. The novel model highlights the importance of considering the fiber geometry on the estimation of elastic properties and establishes a simple set of closed-form formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data available on request.

References

  1. Tsai, S.W., Melo, J.D.D.: An invariant-based theory of composites. Compos. Sci. Technol. 100, 237–243 (2014)

    Article  CAS  Google Scholar 

  2. Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V.: Asymptotical mechanics of composites - modelling composites without FEM. Springer (2018)

    Book  Google Scholar 

  3. Kalamkarov, A.L., Kolpakov, A.G.: Analysis, Design and Optimization of Composite Structure, 2nd edn. Wiley (1997)

    Google Scholar 

  4. Vignoli, L.L., Savi, M.A.: Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study. Lat. Am. J. Solids. Struct. 15, 1–20 (2018)

    Article  Google Scholar 

  5. Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Multiscale Approach to Predict Strength of Notched Composite Plates. Comp. Struct. 253, 112827 (2020)

    Article  Google Scholar 

  6. Vignoli, L.L., Kenedi, P.P., Mariano, M.J.B.: Exploring Thermography Technique to Validate Multiscale Procedure for Notched CFRP Plates. Compos. C. Open. Access. 7, 100241 (2022)

    Article  Google Scholar 

  7. Tsai, S.W.: Double–Double: New Family of Composite Laminates. AIAA. J. 59(11), 4293–4305 (2021)

    Article  Google Scholar 

  8. Kalamkarov, A.L., Andrianov, I., Starushenko, G.: Refinement of the Maxwell Formula for Fiber-Reinforced Composites. J. Multiscale. Model. 11(1), 1950001 (2020)

  9. Yousefi, S.R., Alshamsi, H.A., Amiri, O., Salavati-Niasari, M.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  10. Yousefi, S.R., Sobhani, A., Salavati-Niasari, M.: A new nanocomposite superionic system (CdHgI4/HgI2): Synthesis, characterization and experimental investigation. Adv. Powder. Technol. 28, 1258–1262 (2017)

    Article  CAS  Google Scholar 

  11. Dinulovic, M., Rasuo, B.: Dielectric modeling of multiphase composites. Compos. Struct. 93(12), 3209–3215 (2011)

    Article  Google Scholar 

  12. Yousefi, S.R., Ghanbari, D., Salavati, N.M.: Hydrothermal Synthesis of Nickel Hydroxide Nanostructures and Flame Retardant Poly Vinyl Alcohol and Cellulose Acetate Nanocomposites. J. Nanostruct. 6, 77–82 (2016)

    Google Scholar 

  13. Alam, A., Saha, G.C., Kalamkarov, A.L.: Micromechanical analysis of quantum dot-embedded smart nanocomposite materials. Compos. C. Open. Access. 3, 100062 (2020)

    Article  Google Scholar 

  14. Elnekhaily, S.A., Talreja, R.: Damage initiation in unidirectional fiber composites with different degrees of nonuniform fiber distribution. Compos. Sci. Technol. 155, 22–32 (2018)

    Article  CAS  Google Scholar 

  15. Benzarti, K., Cangemi, L., Maso, F.D.: Transverse properties of unidirectional glass/epoxy composites: influence of fibre surface treatments. Compos. A. 32, 197–206 (2001)

    Article  CAS  Google Scholar 

  16. Ramos, R.R., Medeiros, R., Díaz, R.G., Castillero, J.B., Otero, J.A., Tita, T.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)

    Article  Google Scholar 

  17. Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Comparative analysis of micromechanical models for the elastic composite laminae. Compos. B. 174, 106961 (2019)

    Article  CAS  Google Scholar 

  18. Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Micromechanical analysis of transversal strength of composite laminae. Compos. Struct. 250, 112546 (2020)

    Article  Google Scholar 

  19. Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Micromechanical analysis of longitudinal and shear strength of composite laminae. J. Compos. Mater. 54, 4853–4873 (2020)

    Article  Google Scholar 

  20. Vignoli, L.L., Neto, R.M.C., Savi, M.A., Pacheco, P.M.C.L., Kalamkarov, A.L.: Trace Theory Applied to Composite Analysis: A Comparison with Micromechanical Models. Compos. Commun. 25, 100715 (2021)

  21. Jones, R.M.: Mechanics of composite materials, 2nd edn. Taylor & Francis (1999)

    Google Scholar 

  22. Halpin, J.C., Tsai, S.W.: Effects of environmental factors on composite materials, pp. 67–423. AFML-TR (1969)

    Book  Google Scholar 

  23. Chamis, C.C., Abdi, F., Garg, M., Minnetyan, L., Baid, H., Huang, D., Housner, J., Talagani, F.: Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test cases. J. Compos. Mater. 47, 2695–2712 (2013)

    Article  Google Scholar 

  24. Huang, Y., Cimini, C.A., Jr., Ha, S.K.: A micromechanical unit cell model with an octagonal fiber for continuous fiber reinforced composites. J. Compos. Mater. 54, 4495–4513 (2020)

    Article  Google Scholar 

  25. Verma, A., Vedantam, S., Akella, K., Sivakumar, S.M.: Micromechanics based analytical model for estimation of stress distribution and failure initiation in constituents of UDFRP composites subjected to transverse loading. Ann. Solid. Struct. Mech. 12, 189–197 (2020)

    Article  Google Scholar 

  26. Kalamkarov, A.L., Andrianov, I.V., Danishevs’kyy, V.V.: Asymptotic homogenization of composite materials and structures. Trans. ASME. Appl. Mech. Rev. 62, 030802 (2009)

  27. Kalamkarov, A.L.: Composite and Reinforced Elements of Construction. Wiley, N-Y (1992)

    Google Scholar 

  28. Ramos, R.R., Sabina, F.J., Díaz, R.G., Castillero, J.B.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents - I Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)

    Article  Google Scholar 

  29. Castillero, J.B., Díaz, R.G., Ramos, R.R., Sabina, F.J., Brenner, R.: Unified analytical formulae for the effective properties of periodic fibrous composites. Mater. Lett. 73, 68–71 (2012)

    Article  CAS  Google Scholar 

  30. Mori, T., Tanaka, K.T.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  31. Kalamkarov, A.L., Liu, H.Q.: A new model for the multiphase fiber–matrix composite materials. Compos. B. Eng. 29, 643–653 (1998)

  32. Brighenti, R., Scorza, D.: A micro-mechanical model for statistically unidirectional and randomly distributed fibre-reinforced solids. Math. Mech. Solids. 17, 876–893 (2012)

    Article  Google Scholar 

  33. Brighenti, R., Carpinteri, A., Scorza, D.: Micromechanical crack growth-based fatigue damage in fibrous composites. Int. J. Fatigue. 82, 98–109 (2016)

    Article  Google Scholar 

  34. Tsai, S.W., Sharma, N., Arteiro, A., Roy, S., Rainsberger, B.: Composite grid/skin structures - Low weight/low cost design and manufacturing. Stanford University (2019)

    Google Scholar 

  35. Ha, S.K., Cimini, C.A., Jr.: Theory and validation of the master ply concept for invariant-based stiffness of composites. J. Compos. Mater. 52, 1699–1708 (2018)

    Article  CAS  Google Scholar 

  36. Arteiro, A., Pereira, L.F., Bessa, M.A., Furtado, C., Camanho, P.P.: A micro-mechanics perspective to the invariant-based approach to stiffness. Compos. Sci. Technol. 176, 72–80 (2019)

  37. Arteiro, A., Sharma, N., Melo, J.D.D., Ha, S.K., Miravete, A., Miyano, Y., Massard, T., Shah, P.D., Roy, S., Rainsberger, R., Rother, K., Cimini, C.A., Jr., Seng, J.M., Arakaki, F.K., Tay, T.E., Lee, W.I., Sihn, S., Springer, G.S., Roy, A., Riccio, A., Di Caprio, F., Shrivastava, S., Nettles, A.T., Catalanotti, G., Camanho, P.P., Seneviratne, W., Marques, A.T., Yang, H.T., Hahn, H.T.: A case for Tsai’s Modulus, an invariant-based approach to stiffness. Compos. Struct. 252, 112683 (2020)

    Article  Google Scholar 

  38. Barbero, E.J.: Finite Element Analysis of Composite Materials. CRC Press (2008)

    Google Scholar 

  39. Kaddour, A.S., Hinton, M.J., Smith, P.A., Li, S.: The background to the third world-wide failure exercise. J. Compos. Mater. 47, 2417–2426 (2013)

    Article  Google Scholar 

  40. Kriz, R.D., Stinchcomb, W.W.: Elastic moduli of transversely isotropic graphite fibers and their composites. Exp. Mech. 19, 41–49 (1979)

    Article  Google Scholar 

  41. Tsai, S.W., Hahn, H.T.: Introduction to composite materials. Technomic (1980)

    Google Scholar 

  42. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58, 1011–1022 (1998)

    Article  CAS  Google Scholar 

  43. Bledzki, A.K., Kessler, A., Rikard, R., Chate, A.: Determination of elastic constants of glass/epoxy unidirectional laminates by the vibration testing of plates. Compos. Sci. Technol. 59, 2015–2024 (1999)

    Article  CAS  Google Scholar 

  44. Yim, J.H., Gillespie, J.W., Jr.: Damping characteristics of 0 and 90 AS4/3501-6 unidirectional laminates including the transverse shear effect. Compos. Struct. 50, 217–225 (2000)

    Article  Google Scholar 

  45. Huang, H., Talreja, R.: Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 65, 1964–1981 (2005)

    Article  CAS  Google Scholar 

  46. Camanho, P.P., Maimí, P., Davila, C.G.: Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol. 67, 2715–2727 (2007)

    Article  CAS  Google Scholar 

  47. Lee, J., Soutis, C.: A study on the compressive strength of thick carbon fibre-epoxy laminates. Compos. Sci. Technol. 67, 2015–2026 (2007)

    Article  CAS  Google Scholar 

  48. Benzarti, K., Cangemi, L., Maso, F.D.: Transverse properties of unidirectional glass/epoxy composites: influence of fibre surface treatments. Compos. A. 2001(32), 197–206 (2001)

    Article  Google Scholar 

  49. Kaddour, A.S., Hinton, M.J.: Input data for test cases used in benchmarking triaxial failure theories of composites. J. Compos. Mater. 46, 2295–2312 (2012)

    Article  Google Scholar 

  50. Schaefer, J.D., Werner, B.T., Daniel, I.M.: Strain-rate-dependent failure of a toughened matrix composite. Exp. Mech. 54, 1111–1120 (2014)

    Article  Google Scholar 

  51. Li, W., Cai, H., Zheng, J.: Characterization of strength of carbon fiber reinforced polymer composite based on micromechanics. Polym. Polym. Compos. 22, 2 (2014)

    Google Scholar 

  52. Huang, Z.M.: Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites. Int. J. Solids. Struct. 38, 4147–4172 (2001)

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES, FAPERJ and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Savi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignoli, L.L., Savi, M.A., Pacheco, P.M.C.L. et al. A Novel Micromechanical Model Based on the Rule of Mixtures to Estimate Effective Elastic Properties of Circular Fiber Composites. Appl Compos Mater 29, 1715–1731 (2022). https://doi.org/10.1007/s10443-022-10038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10038-z

Keywords

Navigation