Skip to main content
Log in

Improving Surface Property of Carbon Nanotube Grown Carbon Fiber by Oxidization Post-treatment

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Oxidization treatment has been successfully applied on carbon nanotubes grown carbon fiber (CNTs-CF) to improve the surface activity and the interfacial property of CNTs-CF/epoxy resin (CNTs-CF/EP) composite. The surface element, morphology, and mechanical property of CNTs-CF have been systematically studied by X-ray photoelectron spectrum (XPS), scanning electron microscope (SEM), and single fiber tensile strength tester, respectively. The results indicate that the oxygen content on the CNTs-CF surface has been markedly increased from 2.5% to 19.4% after oxidization treatment, while the tensile strength shows no significant decrease. The CNTs layer on the surface protected the carbon fiber from corrosive oxidization agent, at the cost of collapsing and falling off of itself. Contact angle measurement and shear strength test have been introduced to investigate the interfacial property of CNTs-CF/EP composite. The result shows that the contact angle of resin to fiber has been reduced from ~39° to ~35° after oxidization, while the interfacial shear strength (IFSS) and interlaminar shear strength (ILSS) has been improved by 14.32% and 12.4% compared with untreated CNTs-CF/EP, respectively. A model is proposed to explain the wave-shaped fracture surface phenomenon of the composite. This work could reveal a novel approach to further improve the surface property of carbon fiber after growing carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and studied during the current work are available form the corresponding author on reasonable request.

References

  1. Peter, M.: Carbon Fibers and Their Composite. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Das, T.K., Ghosh, P., Das, N.C.: Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid. Mater. (2019). https://doi.org/10.1007/s42114-018-0072-z

    Article  Google Scholar 

  3. Zheng, H., Zhang, W., Li, B., Zhu, J., Wang, C., Song, G., Ma, L.: Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. B. Eng. (2022). https://doi.org/10.1016/j.compositesb.2022.109639

    Article  Google Scholar 

  4. Alshammari, B.A., Alsuhybani, M.S., Almushaikeh, A.M., Alotaibi, B.M., Alenad, A.M., Alqahtani, N.B., Alharbi, A.G.: Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers. 13(15), 2474 (2021). https://doi.org/10.3390/polym13152474

    Article  CAS  Google Scholar 

  5. Liu, J., Chen, X., Liang, D., Xie, Q.: Development of pitch-based carbon fibers: a review. Energy. Sources. A. Recovery. Util. Environ. Eff. (2020). https://doi.org/10.1080/15567036.2020.1806952

    Article  Google Scholar 

  6. Xu, B., Wang, X., Lu, Y.: Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide. Appl. Surf. Sci. 253(5), 2695–2701 (2006). https://doi.org/10.1016/j.apsusc.2006.05.044

    Article  CAS  Google Scholar 

  7. Yuan, J.M., Fan, Z.F., Yang, Q.C., Li, W., Wu, Z.J.: Surface modification of carbon fibers by microwave etching for epoxy resin composite. Compos. Sci. Technol. 164, 222–228 (2018). https://doi.org/10.1016/j.compscitech.2018.05.043

    Article  CAS  Google Scholar 

  8. Fu, J., Zhang, M., Jin, L., et al.: Enhancing interfacial properties of carbon fibers reinforced epoxy composites via Layer-by-Layer self assembly GO/SiO2 multilayers films on carbon fibers surface. Appl. Surf. Sci. 470, 543–554 (2019). https://doi.org/10.1016/j.apsusc.2018.11.168

    Article  CAS  Google Scholar 

  9. He, M., Xu, P., Zhang, Y., Liu, K., Yang, X.: Phthalocyanine nanowires@ GO/carbon fiber composites with enhanced interfacial properties and electromagnetic interference shielding performance. Chem. Eng. J. 388, 124255 (2020). https://doi.org/10.1016/j.cej.2020.124255

    Article  CAS  Google Scholar 

  10. Zheng, L., Wang, Y., Qin, J., Wang, X., Lu, R., Qu, C., Wang, C.: Scalable manufacturing of carbon nanotubes on continuous carbon fibers surface from chemical vapor deposition. Vacuum. 152, 84–90 (2018). https://doi.org/10.1016/j.vacuum.2018.03.011

    Article  CAS  Google Scholar 

  11. Yao, Z., Wang, C., Qin, J., Su, S., Wang, Y., Wang, Q., Wei, H.: Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures. Carbon. 164, 133–142 (2020). https://doi.org/10.1016/j.carbon.2020.03.060

    Article  CAS  Google Scholar 

  12. Zhao, F., Huang, Y., Liu, L., Bai, Y., Xu, L.: Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon. 49(8), 2624–2632 (2011). https://doi.org/10.1016/j.carbon.2011.02.026

    Article  CAS  Google Scholar 

  13. Giebel, E., Herrmann, T., Simon, F., Fery, A., Buchmeiser, M.R.: Surface Modification of Carbon Fibers by Free Radical Graft-Polymerization of 2-Hydroxyethyl Methacrylate for High Mechanical Strength Fiber-Matrix Composites. Macromol. Mater. Eng. 302(12), 1700210 (2017). https://doi.org/10.1002/mame.201700210

    Article  CAS  Google Scholar 

  14. Stojcevski, F., Hilditch, T.B., Gengenbach, T.R., Henderson, L.C.: Effect of carbon fiber oxidization parameters and sizing deposition levels on the fiber-matrix interfacial shear strength. Compos. A. Appl. Sci. Manuf. 114, 212–224 (2018). https://doi.org/10.1016/j.compositesa.2018.08.022

    Article  CAS  Google Scholar 

  15. Li, J., Sun, F.F.: The effect of nitric acid oxidization treatment on the interface of carbon fiber-reinforced thermoplastic polystyrene composite. Polym. Plast. Technol. Eng. 48(7), 711–715 (2009). https://doi.org/10.1080/03602550902824580

    Article  CAS  Google Scholar 

  16. Wen, Z., Xu, C., Qian, X., Zhang, Y., Wang, X., Song, S., Zhang, C.: A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent. Appl. Surf. Sci. 486, 546–554 (2019). https://doi.org/10.1016/j.apsusc.2019.04.248

    Article  CAS  Google Scholar 

  17. Terrones, M.: Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. Int. Mater. Rev. 49(6), 325–377 (2004). https://doi.org/10.1179/174328004X5655

    Article  CAS  Google Scholar 

  18. Brown, N.M., You, H.X.: A scanning tunnelling microscopy study of PAN-based carbon fibre in air. Surf. Sci. 237(1–3), 273–279 (1990). https://doi.org/10.1016/0039-6028(90)90539-K

    Article  CAS  Google Scholar 

  19. Kara, M., Ak, S., Uyaner, M., Gunoz, A., Kepir, Y.: The effect of hydrothermal aging on the low-velocity impact behavior of multi-walled carbon nanotubes reinforced carbon fiber/epoxy composite pipes. Appl. Compos. Mater. 28(5), 1567–1587 (2021). https://doi.org/10.1007/s10443-021-09923-w

    Article  CAS  Google Scholar 

  20. Çetin, M.E.: Investigation of carbon nanotube reinforcement to polyurethane adhesive for improving impact performance of carbon fiber composite sandwich panels. Int. J. Adhes. Adhes. 112, 103002 (2022). https://doi.org/10.1016/j.ijadhadh.2021.103002

    Article  CAS  Google Scholar 

  21. Çetin, M.E.: The effect of carbon nanotubes modified polyurethane adhesive on the impact behavior of sandwich structures. Polym. Compos. 42(9), 4353–4365 (2021). https://doi.org/10.1002/pc.26153

    Article  CAS  Google Scholar 

  22. Baker, R.T.K., Harris, P.S., Thomas, R.B., Waite, R.J.: Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86–95 (1973). https://doi.org/10.1016/0021-9517(73)90055-9

    Article  CAS  Google Scholar 

  23. Makris, T.D., Giorgi, R., Lisi, N., Pilloni, L., Salernitano, E., De Riccardis, M.F., Carbone, D.: Carbon nanotube growth on PAN-and pitch-based carbon fibres by HFCVD. Fuller. Nanotub. Carbon. Nanostruct. 13(S1), 383–392 (2005). https://doi.org/10.1081/FST-200039380

    Article  CAS  Google Scholar 

  24. Wang, W., Xia, Y., Zeng, L., Liang, J., Lei, D., Chen, S., Zhao, H.F.: Synthesis and characterization of carbon nanotubes on carbon microfibers by floating catalysts method. Appl. Surf. Sci. 253, 6807–6810 (2007). https://doi.org/10.1016/j.apsusc.2007.01.129

    Article  CAS  Google Scholar 

  25. De Greef, N., Zhang, L., Magrez, A., Forró, L., Locquet, J.P., Verpoest, I., Seo, J.W.: Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam. Relat. Mater. 51, 39–48 (2015). https://doi.org/10.1016/j.diamond.2014.11.002

    Article  CAS  Google Scholar 

  26. Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010). https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  27. Pozegic, T.R., Hamerton, I., Anguita, J.V., Tang, W., Ballocchi, P., Jenkins, P., Silva, S.R.P.: Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity. Carbon 74, 319–328 (2014). https://doi.org/10.1016/j.carbon.2014.03.038

    Article  CAS  Google Scholar 

  28. Zhu, S., Su, C.H., Lehoczky, S.L., Muntele, I., Ila, D.: Carbon nanotube growth on carbon fibers. Diam. Relat. Mater. 12(10–11), 1825–1828 (2003). https://doi.org/10.1016/S0925-9635(03)00205-X

  29. Fan, W., Wang, Y., Wang, C., Chen, J., Wang, Q., Yuan, Y., Niu, F.: High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength. Appl. Surf. Sci. 364, 539–551 (2016). https://doi.org/10.1016/j.apsusc.2015.12.189

    Article  CAS  Google Scholar 

  30. Qin, J., Wang, C., Lu, R., Su, S., Yao, Z., Zheng, L., Wei, H.: Uniform growth of carbon nanotubes on carbon fiber cloth after surface oxidation treatment to enhance interfacial strength of composites. Compos. Sci. Technol. 195, 108198 (2020). https://doi.org/10.1016/j.compscitech.2020.108198

    Article  CAS  Google Scholar 

  31. Qin, J., Wang, C., Wang, Y., Su, S., Yao, Z., Ma, Z., Wei, H.: Preparation carbon nanotube-decorated carbon fibers under low pressure for epoxy-based unidirectional hierarchical composites with enhanced interlaminar shear strength. Polym. Test. 93, 106892 (2021). https://doi.org/10.1016/j.polymertesting.2020.106892

    Article  CAS  Google Scholar 

  32. Khan, S., Bedi, H.S., Agnihotri, P.K.: Augmenting mode-II fracture toughness of carbon fiber/epoxy composites through carbon nanotube grafting. Eng. Fract. Mech. 204, 211–220 (2018). https://doi.org/10.1016/j.engfracmech.2018.10.014

    Article  Google Scholar 

  33. Yao, Z., Wang, C., Lu, R., Su, S., Qin, J., Wang, Y., Wang, Q.: Fracture investigation of functionalized carbon nanotubes-grown carbon fiber fabrics/epoxy composites. Compos. Sci. Technol. 195, 108161 (2020). https://doi.org/10.1016/j.compscitech.2020.108161

    Article  CAS  Google Scholar 

  34. Qin, J., Wang, C., Yao, Z., Ma, Z., Gao, Q., Wang, Y., Wei, H.: Growing carbon nanotubes on continuous carbon fibers to produce composites with improved interfacial properties: A step towards commercial production and application. Compos. Sci. Technol. 211, 108870 (2021). https://doi.org/10.1016/j.compscitech.2021.108870

    Article  CAS  Google Scholar 

  35. Wang, X., Qian, X., Zhang, Y., Wang, X., Song, S., Zhang, C.: Surface oxidation of PAN-based ultrahigh modulus carbon fibers (UHMCFs) and its effect on the properties of UHMCF/EP composites. Carbon. Lett. 31(3), 449–461 (2021). https://doi.org/10.1007/s42823-020-00173-7

    Article  Google Scholar 

  36. Lu, W.B., Wang, C.G., Yuan, H., Hu, X.Y.: Liquid-phase oxidation modification of carbon fiber surface. Adv. Mater. Res. 430, 2008–2012 (2012). https://doi.org/10.4028/www.scientific.net/AMR.430-432.2008

    Article  CAS  Google Scholar 

  37. Gulyás, J., Földes, E., Lázár, A., Pukánszky, B.: Electrochemical oxidation of carbon fibres: surface chemistry and adhesion. Compos. A. Appl. Sci. Manuf. 32(3–4), 353–360 (2001). https://doi.org/10.1016/S1359-835X(00)00123-8

    Article  Google Scholar 

  38. Bauer, M., Beratz, S., Ruhland, K., Horn, S., Moosburger-Will, J.: Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: Quantification of surface functional groups by gas-phase derivatization. Appl. Surf. Sci. 506, 144947 (2020). https://doi.org/10.1016/j.apsusc.2019.144947

    Article  CAS  Google Scholar 

  39. Sun, Y., Lu, Y., Yang, C.: Stripping mechanism of PAN-based carbon fiber during anodic oxidation in NaOH electrolyte. Appl. Surf. Sci. 486, 128–136 (2019). https://doi.org/10.1016/j.apsusc.2019.05.018

    Article  CAS  Google Scholar 

  40. Xing, Y., Deng, S., Feng, S., Wang, Q., Hou, Y.: Selective oxidation of carbon to enhance both tensile strength and interfacial adhesion of carbon fiber. J. Adhes. (2018). https://doi.org/10.1080/00218464.2018.1528152

    Article  Google Scholar 

  41. Li, W., Li, R., Li, C., Zhang, L.: Surface characterization and electrical property of carbon fibers modified by air oxidation. Surf. Interface. Anal. 47(3), 325–330 (2015). https://doi.org/10.1002/sia.5711

    Article  CAS  Google Scholar 

  42. Wang, M.W.: Alignment and Surface Modification of Multiwall Carbon Nanotubes Polymeric Composites. Adv. Mater. Res. 881, 872–881 (2014). https://doi.org/10.4028/www.scientific.net/AMR.881-883.872

    Article  CAS  Google Scholar 

  43. Wang, S.: Optimum degree of functionalization for carbon nanotubes. Curr. Appl. Phys. 9(5), 1146–1150 (2009). https://doi.org/10.1016/j.cap.2009.01.004

    Article  Google Scholar 

  44. Meena, S., Choudhary, S.: Effects of functionalization of carbon nanotubes on its spin transport properties. Mater. Chem. Phys. 217, 175–181 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.077

    Article  CAS  Google Scholar 

  45. Valipour, P., Ghasemi, S.E., Khosravani, M.R., Ganji, D.D.: Theoretical analysis on nonlinear vibration of fluid flow in single-walled carbon nanotube. J. Theor. Appl. Phys. 10(3), 211–218 (2016). https://doi.org/10.1007/s40094-016-0217-9

    Article  Google Scholar 

  46. Bai, Y., Wu, F., Lin, D., Xing, B.: Aqueous stabilization of carbon nanotubes: effects of surface oxidization and solution chemistry. Environ. Sci. Pollut. Res. 21(6), 4358–4365 (2014). https://doi.org/10.1007/s11356-013-2304-7

    Article  CAS  Google Scholar 

  47. Siva, R., Valarmathi, T.N., Palanikumar, K., Samrot, A.V.: Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohyd. Polym. 244, 116494 (2020). https://doi.org/10.1016/j.carbpol.2020.116494

    Article  CAS  Google Scholar 

  48. Selvan, M.T.G.A., Binoj, J.S., Moses, J.T.E.J., Sai, N.P., Siengchin, S., Sanjay, M.R., Liu, Y.: Extraction and characterization of natural cellulosic fiber from fragrant screw pine prop roots as potential reinforcement for polymer composites. Polym. Compos. 43(1), 320–329 (2022). https://doi.org/10.1002/pc.26376

    Article  CAS  Google Scholar 

  49. Liu, J., Bai, Y., Tian, Y., Huang, X., Wang, C., Liang, J.: Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers. Acta. Mater. Compos. Sin. 29(2), 16–25 (2012). https://doi.org/10.13801/j.cnki.fhclxb.2012.02.008

  50. Fairley, N., Fernandez, V., Richard-Plouet, M.J., et al.: Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021). https://doi.org/10.1016/j.apsadv.2021.100112

    Article  Google Scholar 

  51. Hinterreiter, A.P., Duchoslav, J., Kehrer, M., Truglas, T., Lumetzberger, A., Unterweger, C., Stifter, D.: Determination of the surface chemistry of ozone-treated carbon fibers by highly consistent evaluation of X-ray photoelectron spectra. Carbon 146, 97–105 (2019). https://doi.org/10.1016/j.carbon.2019.01.081

    Article  CAS  Google Scholar 

  52. Kettle, A.P., Beck, A.J., O’toole, L., Jones, F.R., Short, R.D.: Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimised composites. Compos. Sci. Technol. 57(8), 1023–1032 (1997). https://doi.org/10.1016/S0266-3538(96)00162-5

    Article  CAS  Google Scholar 

  53. Xu, X., Huang, S., Hu, Y., Lu, J., Yang, Z.: Continuous synthesis of carbon nanotubes using a metal-free catalyst by CVD. Mater. Chem. Phys. 133(1), 95–102 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.059

    Article  CAS  Google Scholar 

  54. Kim, K.J., Yu, W.R., Youk, J.H., Lee, J.: Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces. ACS. Appl. Mater. Interfaces. 4(4), 2250–2258 (2012). https://doi.org/10.1021/am3002499

    Article  CAS  Google Scholar 

  55. Naito, K., Yang, J.M., Inoue, Y., Fukuda, H.: The effect of surface modification with carbon nanotubes upon the tensile strength and Weibull modulus of carbon fibers. J. Mater. Sci. 47(23), 8044–8051 (2012). https://doi.org/10.1007/s10853-012-6694-6

    Article  CAS  Google Scholar 

  56. Bamane, S.S., Gaikwad, P.S., Radue, M.S., Gowtham, S., Odegard, G.M.: Wetting Simulations of High-Performance Polymer Resins on Carbon Surfaces as a Function of Temperature Using Molecular Dynamics. Polymers 13(13), 2162 (2021). https://doi.org/10.3390/polym13132162

    Article  CAS  Google Scholar 

  57. Lee, J., Kessler, S.S., Wardle, B.L.: Void-Free Layered Polymeric Architectures via Capillary-Action of Nanoporous Films. Adv. Mater. Interfaces. 7(4), 1901427 (2020). https://doi.org/10.1002/admi.201901427

    Article  CAS  Google Scholar 

Download references

Funding

This paper has no known competing financial interest or personal relationships that could have appeared to influence the reported work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Chen, G., Wang, Q. et al. Improving Surface Property of Carbon Nanotube Grown Carbon Fiber by Oxidization Post-treatment. Appl Compos Mater 29, 1695–1713 (2022). https://doi.org/10.1007/s10443-022-10032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10032-5

Keywords

Navigation