Skip to main content
Log in

High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Flexible strain sensors have attracted numerous attentions due to their application in wearable devices. However, it is still a significant challenge to fabricate flexible strain sensors with both wide sensing range and high sensitivity simultaneously. In this article, this challenge had been addressed by using ultralong silver nanowires (AgNWs) to composite with stretchable thermoplastic polyurethane (TPU). Benefitted by the ultralong AgNWs, stretchable TPU and the hydrogen bond interaction between TPU and PVP on the surface of the ultralong AgNWs, the AgNWs/TPU composite flexible strain sensor with wide sensing range and high sensitivity simultaneously was achieved. The obtained AgNWs/TPU composite flexible strain sensor possessed wide sensing range above 250% with high gauge factor (GF) of 329.43 and excellent stability. The sensing range and GF of the obtained AgNWs/TPU composite flexible strain sensor were higher than those of other similar flexible strain sensor reported in the literature. The response and recovery times were about 100 and 300 ms, respectively. The AgNWs/TPU composite flexible strain sensor could be used to detect human motions such as finger, wrist, elbow, and knee bending as well as facial expressions and micro-acoustic vibrations. The AgNWs/TPU composite flexible strain sensor demonstrates excellent potential for applications in wearable device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statements

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Yousefi, S.R., Sobhani, A., Alshamsi, H.A., Salavati-Niasari, M.: Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. (2021). https://doi.org/10.1039/d0ra10288a

    Article  Google Scholar 

  2. Yousefi, S.R., Masjedi-Arani, M., Morassaei, M.S., Salavati-Niasari, M., Moayedi, H.: Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrog. Energy (2019). https://doi.org/10.7508/jns.2016.01.00*

    Article  Google Scholar 

  3. Yousefi, S.R., Amiri, O., Salavati-Niasari, M.: Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. (2019). https://doi.org/10.1016/j.ultsonch.2019.104619.

  4. Yousefi, S.R., Alshamsi, H.A., Amiri, O., Salavati-Niasari, M.: Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  Google Scholar 

  5. Tozluoglu, A., Poyraz, B., Candan, Z.: Examining the efficiency of mechanic/enzymatic pretreatments in micro/nanofibrillated cellulose production. Maderas. Ciencia y. Tecnologia. (2018). https://doi.org/10.4067/S0718-221X2018005000006

    Article  Google Scholar 

  6. Sarwar, M.S., Niazi, M.B.K., Jahan, Z., Ahmad, T., Hussain, A.: Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2017.12.068

    Article  Google Scholar 

  7. Poyraz, B., Tozluoglu, A., Candan, Z., Demir, A., Yavuz, M.: Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.018.

  8. Poyraz, B., Tozluoğlu, A., Candan, Z., Demir, A.: Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J. Polym. Eng. (2017). https://doi.org/10.1515/polyeng-2017-0022

    Article  Google Scholar 

  9. Zhai, Q., Xiang, F., Cheng, F., Sun, Y., Yang, X., Lu, W., Dai, L.: Recent advances in flexible/stretchable batteries and in-tegrated devices. Energy Storage Mater. (2020). https://doi.org/10.1016/j.ensm.2020.07.003

    Article  Google Scholar 

  10. Wu, Z., Wang, Y., Liu, X., Lv, C., Li, Y., Wei, D., Liu, Z.: Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics. Adv. Mater. (2019). https://doi.org/10.1002/adma.201800716

    Article  Google Scholar 

  11. Nasreldin, M., Mulatier, S., Delattre, R., Ramuz, M., Djenizian, T.: Flexible and Stretchable Microbatteries for Wearable Technologies. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.202000412

    Article  Google Scholar 

  12. Zhao, X., Hua, Q., Yu, R., Zhang, Y., Pan, C.: Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artifi-cial Electronic Skin for Static and Dynamic Strain Mapping. Adv. Electron. Mater. (2015). https://doi.org/10.1002/aelm.201500142

    Article  Google Scholar 

  13. Yang, J.C., Mun, J., Kwon, S.Y., Park, S., Bao, Z., Park, S.: Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. (2019). https://doi.org/10.1002/adma.201904765

    Article  Google Scholar 

  14. Ma, Z., Li, S., Wang, H., Cheng, W., Li, Y., Pan, L., Shi, Y.: Advanced electronic skin devices for healthcare applications. J. Mater. Chem. B (2019). https://doi.org/10.1039/C8TB02862A

    Article  Google Scholar 

  15. Tavakoli, M., Carriere, J., Torabi, A.: Robotics, Smart Wearable Technologies, and Autonomous Intelligent Systems for Healthcare During the COVID-19 Pandemic: An Analysis of the State of the Art and Future Vision. Adv. Intell. Syst. (2020). https://doi.org/10.1002/aisy.202000071

    Article  Google Scholar 

  16. Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., Ren, M., Wang, Y., Chen, J., Chen, W., Chai, Y., Tao, X.: Smart Tex-tile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. (2020). https://doi.org/10.1002/adma.201901958

    Article  Google Scholar 

  17. Copaci, D., Cano, E., Moreno, L., Blanco, D.: New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators. Appl. Bionics. Biomech. (2017). https://doi.org/10.1155/2017/1605101

    Article  Google Scholar 

  18. Zhou, K., Zhao, Y., Sun, X., Yuan, Z., Zheng, G., Dai, K., Mi, L., Pan, C., Liu, C., Shen, C.: Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104546

    Article  Google Scholar 

  19. Wang, R., Xu, W., Shen, W., Shi, X., Huang, J., Song, W.: A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg. Chem. Front. (2019). https://doi.org/10.1039/C9QI00989B

    Article  Google Scholar 

  20. Ma, Z., Wang, W., Yu, D.: Highly Sensitive and Flexible Pressure Sensor Prepared by Simple Printing Used for Micro Motion Detection. Adv. Mater. Interfaces. (2019). https://doi.org/10.1002/admi.201901704

    Article  Google Scholar 

  21. Tan, C., Dong, Z., Li, Y., Zhao, H., Huang, X., Zhou, Z., Jiang, J.W., Long, Y.Z., Jiang, P., Zhang, T.Y., Sun, B.: A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-17301-6

    Article  Google Scholar 

  22. Rashid, I.A., Irfan, M.S., Gill, Y.Q., Nazar, R., Saeed, F., Afzal, A., Ehsan, H., Qaiser, A.A., Shakoor, A.: Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends. Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02796-x

    Article  Google Scholar 

  23. Lu, Y., Sun, H., Cheng, J., Myong, J., Mehedi, H.M., Bhat, G., Yu, B.: High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics. Sens. Actuator. A-Phys. (2020). https://doi.org/10.1016/j.sna.2020.112174

    Article  Google Scholar 

  24. Zhang, Y., Huang, Y., Liu, P., Liu, C., Guo, X., Zhang, Y.: Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mode cooperative conductive network for gait detection. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108070

    Article  Google Scholar 

  25. Wang, Y., Wang, Y., Yang, Y.: Graphene-Polymer Nanocomposite-Based Redox-Induced Electricity for Flexible Self-Powered Strain Sensors. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800961

    Article  Google Scholar 

  26. Yang, Y., Shi, L., Cao, Z., Wang, R., Sun, J.: Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx(MXene) Nanoparticle-Nanosheet Hybrid Network. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201807882

    Article  Google Scholar 

  27. Li, Y., He, T., Shi, L., Wang, R., Sun, J.: Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.9b21921

    Article  Google Scholar 

  28. Yang, K., Yin, F., Xia, D., Peng, H., Yang, J., Yuan, W.: A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale (2019). https://doi.org/10.1039/C9NR00488B

    Article  Google Scholar 

  29. Li, Y., Wang, S., Xiao, Z.C., Yang, Y., Deng, B.W., Yin, B., Ke, K., Yang, M.B.: Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO, J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC00029A.

  30. Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A.A., Park, I., Sitti, M., Amjadi, M.: Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Adv. Intell. Syst. (2020). https://doi.org/10.1002/aisy.202000039

    Article  Google Scholar 

  31. Wei, Y., Chen, S., Yuan, X., Wang, P., Liu, L.: Multiscale Wrinkled Microstructures for Piezoresistive Fibers. Adv. Funct. Mater. (2016). https://doi.org/10.1002/adfm.201600580

    Article  Google Scholar 

  32. Zhai, Y., Yu, Y., Zhou, K., Yun, Z., Huang, W., Liu, H., Xia, Q., Dai, K., Zheng, G., Liu, C., Shen, C.: Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122985

    Article  Google Scholar 

  33. Xu, C., Zheng, Z., Lin, M., Shen, Q., Wang, X., Lin, B., Fu, L.: Strengthened, Antibacterial, and Conductive Flexible Film for Humidity and Strain Sensors. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c10101

    Article  Google Scholar 

  34. Qu, M., Qin, Y., Sun, Y., Xu, H., Schubert, D.W., Zheng, K., Xu, W., Nilsson, F.: Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Appl. Mater. Inter-faces. (2020). https://doi.org/10.1021/acsami.0c11937

    Article  Google Scholar 

  35. Zhang, Q., Yuan, Z.Y., Liu, L.H., Zhao, D., Ji, J.L., Zhuo, K., Zhang, H.L., Zhang, W.D., Sang, S.B.: Performance of CNTs/GQD-Based Flexible Strain Sensors. J. Nanosci. Nanotechnol. (2020). https://doi.org/10.1166/jnn.2020.16905

    Article  Google Scholar 

  36. Yu, Y., Luo, Y., Guo, A., Yan, L., Wu, Y., Jiang, K., Li, Q., Fan, S., Wang, J.: Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale (2017). https://doi.org/10.1039/c6nr09961k

    Article  Google Scholar 

  37. Yang, Z., Wu, Z., Jiang, D., Wei, R., Mai, X., Pan, D., Vupputuri, S., Weng, L., Naik, N., Guo, Z.: Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate. J. Mater. Chem. C (2021). https://doi.org/10.1039/D0TC04659K

    Article  Google Scholar 

  38. Slobodian, P., Danova, R., Olejnik, R., Matyas, J., Münster, L.: Multifunctional flexible and stretchable polyure-thane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. (2019). https://doi.org/10.1002/pat.4621

    Article  Google Scholar 

  39. Li, W., Xu, F., Liu, W., Gao, Y., Zhang, K., Zhang, X., Qiu, Y.: Flexible strain sensor based on aerogel-spun carbon nano-tube yarn with a core-sheath structure. Compos. Pt. A-Appl. Sci. Manuf. (2018). https://doi.org/10.1016/j.compositesa.2018.02.024

    Article  Google Scholar 

  40. Ke, S.H., Guo, P.W., Pang, C.Y., Tian, B., Luo, C.S., Zhu, H.P., Wu, W.: Screen-Printed Flexible Strain Sensors with Ag Nanowires for Intelligent and Tamper-Evident Packaging Applications. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201901097

    Article  Google Scholar 

  41. Wang, D.Y., Tao, L.Q., Liu, Y., Zhang, T.Y., Pang, Y., Wang, Q., Jiang, S., Yang, Y., Ren, T.L.: High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale (2016). https://doi.org/10.1039/c6nr07620c

    Article  Google Scholar 

  42. Pang, Y., Tian, H., Tao, L., Li, Y., Wang, X., Deng, N., Yang, Y., Ren, T.L.: Flexible, Highly Sensitive, and Wearable Pres-sure and Strain Sensors with Graphene Porous Network Structure. ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b08172

    Article  Google Scholar 

  43. Lim, G.-H., Lee, N.E., Lim, B.: Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. J. Mater. Chem. C (2016). https://doi.org/10.1039/C6TC00251J

    Article  Google Scholar 

  44. Jia, Z., Li, Z., Ma, S., Zhang, W., Chen, Y., Luo, Y., Jia, D., Zhong, B., Razal, J.M., Wang, X., Kong, L.: Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.jcis.2020.09.035

    Article  Google Scholar 

  45. Li, S., Xiao, X., Hu, J., Dong, M., Zhang, Y., Xu, R., Wang, X., Islam, J.: Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring. ACS Appl. Electro. Mater. (2020). https://doi.org/10.1021/acsaelm.0c00292

    Article  Google Scholar 

  46. Heo, J.S., Hossain, M.F., Kim, I.: Challenges in Design and Fabrication of Flexible/Stretchable Carbon and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors (Basel). (2020). https://doi.org/10.3390/s20143927

    Article  Google Scholar 

  47. Duan, L., D’Hooge, D.R., Cardon, L.: Recent progress on flexible and stretchable piezoresistive strain sensors: From de-sign to application. Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100617

    Article  Google Scholar 

  48. Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., Wei, Y.: Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B (2017). https://doi.org/10.1016/j.mseb.2017.05.002

    Article  Google Scholar 

  49. Afsarimanesh, N., Nag, A., Sarkar, S., Sabet, G.S., Han, T., Mukhopadhyay, S.C.: A review on fabrication, characteriza-tion and implementation of wearable strain sensors. Sens. Actuator A-Phys. (2020). https://doi.org/10.1016/j.sna.2020.112355

    Article  Google Scholar 

  50. Zhang, L., Jiang, F., Wu, B., Lv, C., Wu, M.: A one-step synthesis of ultra-long silver nanowires with ultra-high aspect ratio above 2000 and its application in flexible transparent conductive electrodes. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abce7a

    Article  Google Scholar 

  51. Zhang, Y., Guo, J., Xu, D., Sun, Y., Yan, F.: One-Pot Synthesis and Purification of Ultralong Silver Nanowires for Flexible Transparent Conductive Electrodes. ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.7b07146

    Article  Google Scholar 

  52. Fahad, S., Yu, H., Wang, L., Nazir, A., Ullah, R. S., Naveed, K.U.R., Elshaarani, T., Amin, B. U., Khan, A., Mehmood, S.: Synthesis of silver nanowires with controlled diameter and their conductive thin films, J. Mater. Sci-Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01649-7.

  53. Song, J., Chen, S., Sun, L., Guo, Y., Zhang, L., Wang, S., Xuan, H., Guan, Q., You, Z.: Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Adv. Mater. (2020). https://doi.org/10.1002/adma.201906994

    Article  Google Scholar 

  54. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. (2011). https://doi.org/10.1038/nnano.2011.36

    Article  Google Scholar 

  55. Tian, H., Shu, Y., Cui, Y.L., Mi, W.T., Yang, Y., Xie, D., Ren, T.L.: Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale (2014). https://doi.org/10.1039/C3NR04521H

    Article  Google Scholar 

  56. Roh, E., Hwang, B.-U., Kim, D., Kim, B.-Y., Lee, N.-E.: Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano (2015). https://doi.org/10.1021/acsnano.5b01613

    Article  Google Scholar 

  57. Liu, Q., Chen, J., Li, Y., Shi, G.: High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano (2016). https://doi.org/10.1021/acsnano.6b03813

    Article  Google Scholar 

  58. Zhu, F., Zheng, S.Y., Lin, J., Wu, Z.L., Yin, J., Qian, J., Qu, S., Zheng, Q.: Integrated multifunctional flexible electronics based on tough supramolecular hydrogels with patterned silver nanowires. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC01011A

    Article  Google Scholar 

  59. Li, C., Cui, Y.L., Tian, G.L., Shu, Y., Wang, X.F., Tian, H., Yang, Y., Wei, F., Ren, T.L.: Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Sci. Rep. (2015). https://doi.org/10.1038/srep15554

    Article  Google Scholar 

  60. Gong, X.X., Fei, G.T., Fu, W.B., Fang, M., Gao, X.D., Zhong, B.N., Zhang, L.D.: Flexible strain sensor with high per-formance based on PANI/PDMS films. Org. Electron. (2017). https://doi.org/10.1016/j.orgel.2017.05.001

    Article  Google Scholar 

  61. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I.: Highly Stretchable and Sensitive Strain Sensor Based on Sil-ver-Nanowire Elastomer Nanocomposite. ACS Nano (2014). https://doi.org/10.1021/nn501204t

    Article  Google Scholar 

  62. Lin, Y., Liu, S., Chen, S., Wei, Y., Dong, X., Liu, L.: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J. Mater. Chem. C (2016). https://doi.org/10.1039/C6TC01925K

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union (European Structural and Investment Funds–Operational Programme Research, Development and Education) in the frames of the project “Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation”, Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293, and Fundation of Zhejiang Sci-Tech University (No. LW-YP2020006). We would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Wu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Hydrogen-bond interaction between TPU and PVP on the surface of ultralong AgNWs was utilized to fabricate flexible strain sensor.

• The flexible strain sensor possessed wide sensing range, high gauge factor of 329.43, and excellent stability.

• The response/recovery time was about 100 and 300 ms, respectively.

• The stretching mechanism of AgNWs/TPU composite flexible strain sensor was discussed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1267 KB)

Supplementary file2 (MP4 1217 KB)

Supplementary file3 (MP4 1217 KB)

Supplementary file4 (DOC 1267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, F., Wang, L. et al. High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices. Appl Compos Mater 29, 1621–1636 (2022). https://doi.org/10.1007/s10443-022-10029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10029-0

Keywords

Navigation