Skip to main content

Advertisement

Log in

A Novel Composite Design Optimization Method for Minimized Manufacturing Cost with Improved Performances

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The design optimization of composite structures generally takes the lightest structural weight or the best performance index as the goal. With the advancement of the aerospace industry and increasingly fierce market competition, the manufacturing cost has become an essential factor affecting the market competitiveness of aircraft and the expansion of composite applications. This study uses a manufacturing process cost model based on process flow simulation to establish objective functions, uses MSC.Patran/Nastran to analyze static strength and aeroelasticity and establish performance constraints. The optimization program is constructed on the Isight software platform based on the Bliss step-by-step idea and multi-island genetic algorithm. The design optimization method of composite structure targeting at manufacturing cost is thus established. On a composite wing with three typical fabrication routes, the manufacturing cost is reduced by 20.23%, 28.18%, and 37.11%. Utilizing the structural characteristics of the objective function and through the control of variables, the optimization simultaneously realized structural weight reduction and performance improvements, achieving reductions up to 18.09% in structural weight, 7.03% in wingtip displacement, 43.65% in torsion angle, and enhancements up to 14.63% in flutter speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data Availability

The data in Figs. 456, 7, 10, 1112 and Tables 15, 67, 8 are generated during this study and are not publicly available due to containing commercially sensitive information, the data will be made available upon reasonable request for academic use and within the limitations of the provided informed consent by the corresponding author upon acceptance. The data in Tables 23 are available from reference [48] and [49], and could be provided together with a translation in English upon reasonable request.

Abbreviations

FACC:

Fischer Advanced Composite Components

ATL:

Automated Tape Lay-up

EWH:

Effective Work Hour

GA:

Genetic Algorithm

HRF:

Hourly Rate Factor

MCDG:

Manufacturing Cost/Design Guide

MIGA:

Multi-Island Genetic Algorithm

MCPM:

Manufacturing Process Cost Model

RTM:

Resin Transfer Injection Molding

SCE:

Structural Complexity Elements

UAV:

Unmated Aerial Vehicle

References

  1. Othman, M.F., Silva, G.H.C., Cabral, P.H., Prado, A.P., Pirrera, A., Cooper, J.E.: A robust and reliability-based aeroelastic tailoring framework for composite aircraft wings. Compos. Struct. 208, 101–113 (2019). https://doi.org/10.1016/j.compstruct.2018.09.086

    Article  Google Scholar 

  2. Silva, G.H.C., Do Prado, A.P., Cabral, P.H., De Breuker, R., Dillinger, J.K.S.: Tailoring of a composite regional jet wing using the slice and swap method. J. Aircr. 56, 990–1004 (2019). https://doi.org/10.2514/1.C035094

  3. Rajpal, D., Mitrotta, F.M.A., Socci, C.A., Sodja, J., Kassapoglou, C., De Breuker, R.: Design and testing of aeroelastically tailored composite wing under fatigue and gust loading including effect of fatigue on aeroelastic performance. Compos. Struct. 275, 114373 (2021). https://doi.org/10.1016/j.compstruct.2021.114373

    Article  Google Scholar 

  4. Townsend, S., Kambampati, S., Kim, H.A.: Aeroelastic optimization of wing skin using a level set method. 2018 Multidiscip. Anal. Optim. Conf. (2018). https://doi.org/10.2514/6.2018-3878

  5. Chiozzotto, G.P.: Initial weight estimate of advanced transport aircraft concepts considering aeroelastic effects. AIAA SciTech Forum - 55th AIAA Aerosp. Sci. Meet. (2017). https://doi.org/10.2514/6.2017-0009

  6. Rajpal, D., Kassapoglou, C., De Breuker, R.: Aeroelastic optimization of composite wings including fatigue loading requirements. Compos. Struct. 227, 111248 (2019). https://doi.org/10.1016/j.compstruct.2019.111248

    Article  Google Scholar 

  7. Sanches, L., Guimarães, T.A.M., Marques, F.D.: Aeroelastic tailoring of nonlinear typical section using the method of multiple scales to predict post-flutter stable LCOs. Aerosp. Sci. Technol. 90, 157–168 (2019). https://doi.org/10.1016/j.ast.2019.04.031

    Article  Google Scholar 

  8. Alyanak, E.J., Pendleton, E.: Aeroelastic tailoring and active aeroelastic wing impact on a lambda wing configuration. J. Aircr. 54, 11–19 (2017). https://doi.org/10.2514/1.C033040

    Article  Google Scholar 

  9. Opgenoord, M.M.J., Willcox, K.E.: Aeroelastic tailoring using additively manufactured lattice structures. 2018 Multidiscip. Anal. Optim. Conf. (2018). https://doi.org/10.2514/6.2018-4055

  10. Natella, M., Wang, X., De Breuker, R.: The effects of aeroelastic tailoring on flight dynamic stability. AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2018. (2018). https://doi.org/10.2514/6.2018-0191

  11. Brooks, T.R., Martins, J.R.R.A., Kennedy, G.J.: Aerostructural tradeoffs for tow-steered composite wings. J. Aircr. 57, 787–799 (2020). https://doi.org/10.2514/1.C035699

    Article  Google Scholar 

  12. Brooks, T.R., Smith, B.D.: Aerostructural design optimization of the d8 aircraft using active aeroelastic tailoring. AIAA Scitech 2020 Forum. 1 PartF, 1–12 (2020). https://doi.org/10.2514/6.2020-1967

  13. Stodieck, O., Cooper, J.E., Weaver, P.M., Kealy, P.: Optimization of tow-steered composite wing laminates for aeroelastic tailoring. AIAA J. 53, 2203–2215 (2015). https://doi.org/10.2514/1.J053599

    Article  Google Scholar 

  14. Zhao, W., Kapania, R.K.: Multiobjective optimization of composite flying-wings with sparibs and multiple control surfaces. 2018 Multidiscip. Anal. Optim. Conf. 1–44 (2018). https://doi.org/10.2514/6.2018-3424

  15. Zhao, W., Jrad, M., Gupta, R., Kapania, R.K.: Multidisciplinary design, analysis and optimization of performance adaptive aeroelastic wings. AIAA Atmos. Flight Mech. Conf. 2017, 1–38 (2017). https://doi.org/10.2514/6.2017-1392

    Article  Google Scholar 

  16. Bryson, D.E., Rumpfkeil, M.P., Durscher, R.J.: Framework for multifidelity aeroelastic vehicle design optimization. 18th AIAA/ISSMO Multidiscip. Anal. Optim. Conf. 2017. (2017). https://doi.org/10.2514/6.2017-4322

  17. Feng, Y., Ma, B., Cui, R., An, T., He, Y., Jiao, S.: Effects of hygrothermal environment on the buckling and postbuckling performances of stiffened composite panels under axial compression. Compos. Struct. 242, (2020). https://doi.org/10.1016/j.compstruct.2020.112132

  18. Fiorina, M., Seman, A., Castanie, B., Ali, K.M., Schwob, C., Mezeix, L.: Spring-in prediction for carbon/epoxy aerospace composite structure. Compos. Struct. 168, 739–745 (2017). https://doi.org/10.1016/j.compstruct.2017.02.074

    Article  Google Scholar 

  19. Stanford, B.K., Jutte, C.V., Wieseman, C.D.: Trim and structural optimization of subsonic transport wings using nonconventional aeroelastic tailoring. AIAA J. 54, 293–309 (2016). https://doi.org/10.2514/1.J054244

    Article  Google Scholar 

  20. Meindlhumer, M., Horejsi, K., Schagerl, M.: Manufacturing and costs of current sandwich and future monolithic designs of spoilers. J. Aircr. 56, 85–93 (2019). https://doi.org/10.2514/1.C034891

    Article  Google Scholar 

  21. Wang, K., Kelly, D., Dutton, S.: Multi-objective optimisation of composite aerospace structures. Compos. Struct. 57, 141–148 (2002). https://doi.org/10.1016/S0263-8223(02)00078-8

    Article  Google Scholar 

  22. Howard, N.: Cost effective composites for aerospace applications. Reinf. Plast. 45, 40–42 (2001). https://doi.org/10.1016/S0034-3617(01)80349-0

    Article  Google Scholar 

  23. Bader, M.G.: Selection of composite materials and manufacturing routes for cost- effective performance. 33, 913–934 (2002)

    Google Scholar 

  24. Bevilaqua, P.M.: Design of aircraft for best value. J. Aircr. 58, 793–802 (2021). https://doi.org/10.2514/1.C036012/ASSET/IMAGES/LARGE/FIGURE15.JPEG

    Article  Google Scholar 

  25. Pantelakis, S.G., Katsiropoulos, C. V., Loukopoulos, A.: Optimization of Composite Aircraft Structures with Regard to Quality, Cost and Environmental Footprint. Proc. - 2018 IEEE Int. Conf. Environ. Electr. Eng. 2018 IEEE Ind. Commer. Power Syst. Eur. EEEIC/I CPS Eur. 2018. 1–6 (2018). https://doi.org/10.1109/EEEIC.2018.8493792

  26. Hueber, C., Schwingshandl, N., Schledjewski, R.: Uncertainty propagation and sensitivity analysis in composite manufacturing cost estimation: ALPHA-framework and cost tool development. Adv. Manuf. Polym. Compos. Sci. 5, 69–84 (2019). https://doi.org/10.1080/20550340.2019.1599536

  27. Hagnell, M.K., Kumaraswamy, S., Nyman, T., Åkermo, M.: From aviation to automotive - a study on material selection and its implication on cost and weight efficient structural composite and sandwich designs. Heliyon. 6, e03716 (2020). https://doi.org/10.1016/j.heliyon.2020.e03716

    Article  CAS  Google Scholar 

  28. Tapeinos, I.G., Miaris, A., Mitschang, P., Alexopoulos, N.D.: Carbon nanotube-based polymer composites: A trade-off between manufacturing cost and mechanical performance. Compos. Sci. Technol. 72, 774–787 (2012). https://doi.org/10.1016/j.compscitech.2012.02.004

    Article  CAS  Google Scholar 

  29. Kamal, A.M., Ramirez-Serrano, A.: Systematic methodology for aircraft concept development with application to transitional aircraft. J. Aircr. 57, 179–197 (2020). https://doi.org/10.2514/1.C035437/ASSET/IMAGES/LARGE/FIGURE16.JPEG

    Article  Google Scholar 

  30. Megahed, M., Abo-bakr, R.M., Mohamed, S.A.: Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Compos. Struct. 239, (2020). https://doi.org/10.1016/j.compstruct.2020.111984

  31. Ricco, J.T., Coimbra, R.F.F., Gomes, G.F.: Multiobjective optimization of the LASER aircraft wing’s composite structural design. Aircr. Eng. Aerosp. Technol. 93, 995–1010 (2021). https://doi.org/10.1108/AEAT-06-2020-0113

    Article  Google Scholar 

  32. Jalili, S., Khani, R., Hosseinzadeh, Y.: On the performance of flax fibres in multi-objective design of laminated composite plates for buckling and cost. Structures. 33, 3094–3106 (2021). https://doi.org/10.1016/j.istruc.2021.06.026

    Article  Google Scholar 

  33. An, H., Chen, S., Huang, H.: Multi-objective optimal design of hybrid composite laminates for minimum cost and maximum fundamental frequency and frequency gaps. Compos. Struct. 209, 268–276 (2019). https://doi.org/10.1016/j.compstruct.2018.10.075

    Article  Google Scholar 

  34. Viscardi, M., Arena, M., Cerreta, P., Iaccarino, P., Imparato, S.I.: Manufacturing and Validation of a Novel Composite Component for Aircraft Main Landing Gear Bay. J. Mater. Eng. Perform. 28, 3292–3300 (2019). https://doi.org/10.1007/s11665-019-04106-y

    Article  CAS  Google Scholar 

  35. Park, C.H., Lee, W. Il, Han, W.S., Vautrin, A.: Simultaneous optimization of composite structures considering mechanical performance and manufacturing cost. Compos. Struct. 65, 117–127 (2004). https://doi.org/10.1016/j.compstruct.2003.10.010

  36. Nadir, W., Kim, I.Y., De Weck, O.L.: Structural shape optimization considering both performance and manufacturing cost. Collect. Tech. Pap. - 10th AIAA/ISSMO Multidiscip. Anal. Optim. Conf. 5, 3240–3251 (2004). https://doi.org/10.2514/6.2004-4593

  37. Sohouli, A., Yildiz, M., Suleman, A.: Cost analysis of variable stiffness composite structures with application to a wind turbine blade. Compos. Struct. 203, 681–695 (2018). https://doi.org/10.1016/j.compstruct.2018.07.049

    Article  Google Scholar 

  38. Mårtensson, P., Zenkert, D., Åkermo, M.: Effects of manufacturing constraints on the cost and weight efficiency of integral and differential automotive composite structures. Compos. Struct. 134, 572–578 (2015). https://doi.org/10.1016/j.compstruct.2015.08.115

    Article  Google Scholar 

  39. Irisarri, F.X., Macquart, T., Julien, C., Espinassou, D.: A novel design method for the fast and cost-effective manufacture of composite parts employing the Quilted Stratum Process. Compos. Part B Eng. 158, 364–372 (2019). https://doi.org/10.1016/j.compositesb.2018.09.070

    Article  CAS  Google Scholar 

  40. Chen, S., Li, D., Xiang, J., Zhao, S.: Composite Manufacturing Cost Model Targeting on Design Optimization. Appl. Compos. Mater. 27, 673–691 (2020). https://doi.org/10.1007/s10443-020-09828-0

    Article  CAS  Google Scholar 

  41. Rasuo, B.: Experimental study of structural damping of composite helicopter blades with different cores. Plast., Rubber Compos. 39, 1–5 (2010). https://doi.org/10.1179/174328910X12608851832092

    Article  CAS  Google Scholar 

  42. Rasuo, B.: Experimental techniques for evaluation of fatigue characteristics of laminated constructions from composite materials: Full-scale testing of the helicopter rotor blades. J. Test. Eval. 39(2) (2011). https://doi.org/10.1520/JTE102768

  43. Rasuo, B.: Damage tolerance and survivability of composite aircraft structures. Struct. Integr. Durab. Adv. Compos. Innov. Model. Methods Intell. Des. 641–657 (2015). https://doi.org/10.1016/B978-0-08-100137-0.00023-7

  44. Rasuo, B.: An experimental methodology for evaluating survivability of an aeronautical construction from composite materials: An overview. Int. J. Crashworthiness. 12(1), 9–15 (2007). https://doi.org/10.1533/ijcr.2006.0135

    Article  Google Scholar 

  45. Garinis, D., Dinulović, M., Rašuo, B.: Dynamic analysis of modified composite helicopter blade. FME Trans. 40, 63–68 (2012)

    Google Scholar 

  46. Rasuo, B.: On Structural Damping of Composite Aircraft Structures. Compr. Compos. Mater. II. 288–299 (2018). https://doi.org/10.1016/B978-0-12-803581-8.10338-8

  47. Yu, Y., Wang, Z., Guo, S.: Efficient Method for Aeroelastic Tailoring of Composite Wing to Minimize Gust Response. Int. J. Aerosp. 2017, (2017)

  48. Rogowski, K., Kr, G., Bangga, G.: Numerical Study on the Aerodynamic Characteristics of the NACA 0018 Airfoil at Low Reynolds Number for Darrieus Wind Turbines Using the Transition SST Model. Processes 9, 477 (2021). https://doi.org/10.3390/pr9030477

    Article  CAS  Google Scholar 

  49. Liu, D.: Structural optimization design of composite wing with large aspect ratio. Nanjing University of Aeronautics and Astronautics, Nanjing, College of Aerospace Engineering (2019).. ([in Chinese])

    Google Scholar 

  50. Wang, Z., Wan, Z., Groh, R.M.J., Wang, X.: Aeroelastic and local buckling optimisation of a variable-angle-tow composite wing-box structure. Compos. Struct. 258, 113201 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2020.113201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shize Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, D. & Xiang, J. A Novel Composite Design Optimization Method for Minimized Manufacturing Cost with Improved Performances. Appl Compos Mater 29, 1479–1505 (2022). https://doi.org/10.1007/s10443-022-10027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10027-2

Keywords

Navigation