Skip to main content
Log in

Experimental Assessment of Residual Integrity and Balanced Mechanical Properties of GFRP/CFRP Hybrid Laminates under Tensile and Flexural Conditions

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this work, the hybrid effect on both tensile and flexural properties as well as the residual integrity of six hybrid unidirectional laminates of carbon/glass fibers with epoxy resin matrix was experimentally assessed. The experimental results showed that the best balance on both tensile and flexural properties was obtained by a high degree of dispersion of low and high elongation reinforcement within the interply hybrid configuration. The [G/C/G]s hybrid condition exhibited a hybrid effect ranging from 1.30 to 1.87, which means an increase of 30% and 87% for the laminate mechanical performance, respectively. Furthermore, increases in both the tensile residual integrity of 3.67 times, and the flexural residual integrity of 1.26 times were obtained, compared to the reference laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E.: Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers (Basel). 11, 1667 (2019). https://doi.org/10.3390/polym11101667

  2. Zagho, M., Hussein, E., Elzatahry, A.: Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers (Basel). 10, 739 (2018). https://doi.org/10.3390/polym10070739

  3. Neves Monteiro, S., Salgado de Assis, F., Ferreira, C., Tonini Simonassi, N., Pondé Weber, R., Souza Oliveira, M., Colorado, H., Camposo Pereira, A.: Fique Fabric: A Promising Reinforcement for Polymer Composites. Polymers (Basel). 10, 246 (2018). https://doi.org/10.3390/polym10030246

  4. Swolfs, Y., Gorbatikh, L., Verpoest, I.: Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 67, 181–200 (2014). https://doi.org/10.1016/j.compositesa.2014.08.027

    Article  CAS  Google Scholar 

  5. Vermeeren, C.A.J.R.: An Historic Overview of the Development of Fibre Metal Laminates, (2003)

  6. Sadighi, M., Pärnänen, T., Alderliesten, R.C., Sayeaftabi, M., Benedictus, R.: Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates. Appl. Compos. Mater. (2012). https://doi.org/10.1007/s10443-011-9235-6

    Article  Google Scholar 

  7. Muflikhun, M.A., Yokozeki, T., Aoki, T.: The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures. Compos. Struct. (2019). https://doi.org/10.1016/j.compstruct.2019.03.094

    Article  Google Scholar 

  8. Damghani, M., Ersoy, N., Piorkowski, M., Murphy, A.: Experimental evaluation of residual tensile strength of hybrid composite aerospace materials after low velocity impact. Compos. Part B Eng. 179, 107537 (2019). https://doi.org/10.1016/j.compositesb.2019.107537

    Article  CAS  Google Scholar 

  9. Swolfs, Y., Verpoest, I., Gorbatikh, L.: Tensile failure of hybrid composites: measuring, predicting and understanding. IOP Conf. Ser. Mater. Sci. Eng. 139, 012008 (2016). https://doi.org/10.1088/1757-899X/139/1/012008

    Article  Google Scholar 

  10. Zweben, C.: Tensile strength of hybrid composites. J. Mater. Sci. 12, 1325–1337 (1977). https://doi.org/10.1007/BF00540846

    Article  CAS  Google Scholar 

  11. Fukuda, H.: An advanced theory of the strength of hybrid composites. J. Mater. Sci. 19, 974–982 (1984). https://doi.org/10.1007/BF00540468

    Article  CAS  Google Scholar 

  12. Zeng, Q.-D.: A statistical analysis of the tensile failure and hybrid effect of an intraply hybrid composite. Int. J. Fract. 68, 351–362 (1995). https://doi.org/10.1007/BF00033961

    Article  CAS  Google Scholar 

  13. Swolfs, Y., McMeeking, R.M., Rajan, V.P., Zok, F.W., Verpoest, I., Gorbatikh, L.: Global load-sharing model for unidirectional hybrid fibre-reinforced composites. J. Mech. Phys. Solids. 84, 380–394 (2015). https://doi.org/10.1016/j.jmps.2015.08.009

    Article  CAS  Google Scholar 

  14. Rajan, V.P., Curtin, W.A.: Rational design of fiber-reinforced hybrid composites: A global load sharing analysis. Compos. Sci. Technol. 117, 199–207 (2015). https://doi.org/10.1016/j.compscitech.2015.06.015

    Article  CAS  Google Scholar 

  15. Mesquita, F., Swolfs, Y., Lomov, S.V., Gorbatikh, L.: Ply fragmentation in unidirectional hybrid composites linked to stochastic fibre behaviour: A dual-scale model. Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2019.107702

    Article  Google Scholar 

  16. Callens, M.G., Gorbatikh, L., Verpoest, I.: Ductile steel fibre composites with brittle and ductile matrices. Compos. Part A Appl. Sci. Manuf. 61, 235–244 (2014). https://doi.org/10.1016/j.compositesa.2014.02.006

    Article  CAS  Google Scholar 

  17. Wetherhold, R.C., Lee, F.K.: Shaped ductile fibers to improve the toughness of epoxy-matrix composites. Compos. Sci. Technol. 61, 517–530 (2001). https://doi.org/10.1016/S0266-3538(00)00217-7

    Article  CAS  Google Scholar 

  18. Fukunaga, H., Chou, T.-W., Fukuda, H.: Strength of Intermingled Hybrid Composites. J. Reinf. Plast. Compos. 3, 145–160 (1984). https://doi.org/10.1177/073168448400300204

    Article  Google Scholar 

  19. Mishra, R., Militky, J., Gupta, N., Pachauri, R., Behera, B.K.: Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 81, 91–97 (2015). https://doi.org/10.1016/j.compositesb.2015.07.008

    Article  CAS  Google Scholar 

  20. de Moura, M.F.S.F., Fernandes, R., Silva, F.G.A., Dourado, N.: Mode II fracture characterization of a hybrid cork/carbon-epoxy laminate. Compos. Part B Eng. 76, 44–51 (2015). https://doi.org/10.1016/j.compositesb.2015.02.010

    Article  CAS  Google Scholar 

  21. Esmaeeli, E., Barros, J.A.O.: Flexural strengthening of RC beams using Hybrid Composite Plate (HCP): Experimental and analytical study. Compos. Part B Eng. 79, 604–620 (2015). https://doi.org/10.1016/j.compositesb.2015.05.003

    Article  CAS  Google Scholar 

  22. Nguyen, H., Mutsuyoshi, H., Zatar, W.: Hybrid FRP-UHPFRC composite girders: Part 1 – Experimental and numerical approach. Compos. Struct. 125, 631–652 (2015). https://doi.org/10.1016/j.compstruct.2014.10.038

    Article  Google Scholar 

  23. Swolfs, Y., Meerten, Y., Hine, P., Ward, I., Verpoest, I., Gorbatikh, L.: Introducing ductility in hybrid carbon fibre/self-reinforced composites through control of the damage mechanisms. Compos. Struct. 131, 259–265 (2015). https://doi.org/10.1016/j.compstruct.2015.04.069

    Article  Google Scholar 

  24. Czél, G., Wisnom, M.R.: Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Compos. Part A Appl. Sci. Manuf. 52, 23–30 (2013). https://doi.org/10.1016/j.compositesa.2013.04.006

    Article  CAS  Google Scholar 

  25. Jalalvand, M., Czél, G., Wisnom, M.R.: Damage analysis of pseudo-ductile thin-ply UD hybrid composites – A new analytical method. Compos. Part A Appl. Sci. Manuf. 69, 83–93 (2015). https://doi.org/10.1016/j.compositesa.2014.11.006

    Article  CAS  Google Scholar 

  26. Alessi, R., Freddi, F.: Phase-field modelling of failure in hybrid laminates. Compos. Struct. 181, 9–25 (2017). https://doi.org/10.1016/j.compstruct.2017.08.073

    Article  Google Scholar 

  27. Fotouhi, M., Jalalvand, M., Saeedifar, M., Xiao, B., Wisnom, M.R.: High performance quasi-isotropic thin-ply carbon/glass hybrid composites with pseudo-ductile behaviour loaded off-axis. Compos. Struct. 247, 112444 (2020). https://doi.org/10.1016/j.compstruct.2020.112444

    Article  Google Scholar 

  28. Ribeiro, F., Sena-Cruz, J., Branco, F.G., Júlio, E., Castro, F.: Analytical hybrid effect prediction and evolution of the tensile response of unidirectional hybrid fibre-reinforced polymers composites for civil engineering applications. (2020). https://doi.org/10.1177/0021998320911956

  29. ASTM International: ASTM D3039 / D3039M-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. In: Annual book of ASTM Standards. West Conshohocken, PA (2014)

  30. ASTM International: ASTM D7264 / D7264M-07, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. In: Annual book of ASTM Standards. West Conshohocken, PA (2007)

  31. ACP Composites: 4.7 oz. “Uni-web” unidirectional carbon fiber, Datasheet. (2019)

  32. ACP Composites: 4.2 oz. “Uni-web” unidirectional S-Glass, Datasheet. (2019)

  33. Axson: Resin Epolam 5015, Datasheet. (2019)

  34. Ikbal, M.H., Ahmed, A., Qingtao, W., Shuai, Z., Wei, L.: Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading. J. Ind. Text. 46, 1511–1535 (2017). https://doi.org/10.1177/1528083715624259

    Article  CAS  Google Scholar 

  35. Attia, M., Abd El-baky, M., Alshorbagy, A.: Mechanical performance of intraply and inter-intraply hybrid composites based on e-glass and polypropylene unidirectional fibers. J. Compos. Mater. 51, 381–394 (2017). https://doi.org/10.1177/0021998316644972

    Article  CAS  Google Scholar 

  36. Zhang, J., Chaisombat, K., He, S., Wang, C.H.: Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater. Des. 36, 75–80 (2012). https://doi.org/10.1016/j.matdes.2011.11.006

    Article  CAS  Google Scholar 

  37. Dong, C., Davies, I.J.: Flexural and tensile moduli of unidirectional hybrid epoxy composites reinforced by S-2 glass and T700S carbon fibres. Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.08.086

    Article  Google Scholar 

  38. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press (2004)

  39. Banerjee, A.N., Saha, N., Mitra, B.C.: Flexural behavior of unidirectional polyethylene-carbon fibers-PMMA hybrid composite laminates. J. Appl. Polym. Sci. 60, 139–142 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1%3c139::AID-APP16%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  40. Naik, N., Ramasimha, R., Arya, H., Prabhu, S., ShamaRao, N.: Impact response and damage tolerance characteristics of glass–carbon/epoxy hybrid composite plates. Compos. Part B Eng. 32, 565–574 (2001). https://doi.org/10.1016/S1359-8368(01)00036-1

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT through the scholarship 294884 and by TecNM through the project 6375.18-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Alcudia-Zacarías.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcudia-Zacarías, E., Abúndez-Pliego, A., Mayén, J. et al. Experimental Assessment of Residual Integrity and Balanced Mechanical Properties of GFRP/CFRP Hybrid Laminates under Tensile and Flexural Conditions. Appl Compos Mater 27, 895–914 (2020). https://doi.org/10.1007/s10443-020-09839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09839-x

Keywords

Navigation