Skip to main content
Log in

Impact Response of Carbon/Kevlar Hybrid 3D Woven Composite Under High Velocity Impact: Experimental and Numerical Study

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The ballistic impact behavior of hybrid 3-dimentional woven composites (3DWC) is predicted through a novel numerical modeling technique and validated the outcome through experimental data. Continuum shell elements with Hashin failure criterion and cohesive surface contact algorithm with traction separation law are used to predict the damage behavior and failure mechanisms during the impact process at interply and intraply levels. Z-yarns are represented by the connector elements with uniaxial behavior having stress-based failure criterion. The proposed methodology predicted the different damage mechanisms during the impact process in comparison with the experimental data and estimated the residual velocities with acceptable accuracy. Different failure mechanisms incurred due to the hybrid nature of the material are also captured by the numerical simulation and the effect of z-yarns are truly depicted by the use of simple 1D elements over the different phases of perforation process. Overall, the finite element (FE) methodology by using simplest form of the elements, their constitutive and damage behavior gives promising results by sufficiently reducing the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hu, Q., Zhang, Y., Mao, Y., Memon, H., Qiu, Y., Wei, Y., Liu, W.: A comparative study on interlaminar properties of l-shaped two-dimensional (2d) and three-dimensional (3d) woven composites. Appl. Compos. Mater. 26(3), 723–744 (2019)

    Article  CAS  Google Scholar 

  2. Schoeppner, G.A., Abrate, S.: Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A 31(9), 903–915 (2000)

    Article  Google Scholar 

  3. Tan, P., Tong, L., Steven, G., Ishikawa, T.: Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Compos. Part A 31(3), 259–271 (2000)

    Article  Google Scholar 

  4. Potluri, P., Hogg, P., Arshad, M., Jetavat, D., Jamshidi, P.: Influence of fibre architecture on impact damage tolerance in 3D woven composites. Appl. Compos. Mater. 19(5), 799–812 (2012)

    Article  Google Scholar 

  5. Quinn, J., Mcilhagger, R., McIlhagger, A.: A modified system for design and analysis of 3D woven preforms. Compos. Part A 34(6), 503–509 (2003)

    Article  Google Scholar 

  6. Mouritz, A.P., Bannister, M.K., Falzon, P., Leong, K.: Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A 30(12), 1445–1461 (1999)

    Article  Google Scholar 

  7. Yu, S., Zhang, D., Qian, K.: Numerical Analysis of Macro-Scale Mechanical Behaviors of 3D Orthogonal Woven Composites using a Voxel-Based Finite Element Model. Appl. Compos. Mater. 26(1), 65–83 (2019)

    Article  Google Scholar 

  8. Dolce, F., Meo, M., Wright, A., French, M., Bernabei, M.: Hybrid S2/carbon epoxy composite armours under blast loads. Appl. Compos. Mater. 19(3–4), 349–362 (2012)

    Article  Google Scholar 

  9. Safri, S.N.A., Sultan, M.T.H., Jawaid, M., Jayakrishna, K.: Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B 133, 112–121 (2018)

    Article  CAS  Google Scholar 

  10. Hancox, N.L.: Fibre composite hybrid materials. Appl. Sci. (1981)

  11. Richardson, T.: Composites: a design guide. Industrial Press Inc, New York, p 343 (1987)

    Google Scholar 

  12. Muñoz, R., Martínez, V., Sket, F., González, C., LLorca, J.: Mechanical behavior and failure micromechanisms of hybrid 3D woven composites in tension. Compos. Part A 59, 93–104 (2014)

    Article  Google Scholar 

  13. Naik, N., Ramasimha, R., Arya, H., Prabhu, S., ShamaRao, N.: Impact response and damage tolerance characteristics of glass–carbon/epoxy hybrid composite plates. Compos. Part B 32(7), 565–574 (2001)

    Article  Google Scholar 

  14. Hosur, M., Adbullah, M., Jeelani, S.: Studies on the low-velocity impact response of woven hybrid composites. Compos. Struct. 67(3), 253–262 (2005)

    Article  Google Scholar 

  15. Jang, B., Chen, L., Wang, C., Lin, H., Zee, R.: Impact resistance and energy absorption mechanisms in hybrid composites. Compos. Sci. Technol. 34(4), 305–335 (1989)

    Article  CAS  Google Scholar 

  16. Valença, S.L., Griza, S., de Oliveira, V.G., Sussuchi, E.M., de Cunha, F.G.C.: Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Compos. Part B 70, 1–8 (2015)

    Article  Google Scholar 

  17. Muhi, R.J., Najim, F., de Moura, M.F.: The effect of hybridization on the GFRP behavior under high velocity impact. Compos. Part B 40(8), 798–803 (2009)

    Article  Google Scholar 

  18. Enfedaque, A., Molina-Aldareguía, J., Gálvez, F., González, C., Llorca, J.: Effect of glass fiber hybridization on the behavior under impact of woven carbon fiber/epoxy laminates. J. Compos. Mater. 44(25), 3051–3068 (2010)

    Article  CAS  Google Scholar 

  19. Baucom, J., Zikry, M.a., Rajendran, A.: Low-velocity impact damage accumulation in woven S2-glass composite systems. Compos. Sci. Technol. 66(10), 1229–1238 (2006)

    Article  CAS  Google Scholar 

  20. Chen, F., Hodgkinson, J.: Impact behaviour of composites with different fibre architecture. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 223(7), 1009–1017 (2009)

  21. Lv, L., Gu, B.: Transverse impact damage and energy absorption of three-dimensional orthogonal hybrid woven composite: Experimental and FEM simulation. J. Compos. Mater. 42(17), 1763–1786 (2008)

    Article  Google Scholar 

  22. Tong, L., Mouritz, A.P., Bannister, M.: 3D fibre reinforced polymer composites. Elsevier, Amsterdam

  23. Ansar, M., Xinwei, W., Chouwei, Z.: Modeling strategies of 3D woven composites: a review. Compos. Struct. 93(8), 1947–1963 (2011)

    Article  Google Scholar 

  24. Ji, C., Sun, B., Qiu, Y., Gu, B.: Impact damage of 3D orthogonal woven composite circular plates. Appl. Compos. Mater. 14(5–6), 343–362 (2007)

    Article  Google Scholar 

  25. Naik, N., Meduri, S.: Polymer-matrix composites subjected to low-velocity impact: effect of laminate configuration. Compos. Sci. Technol. 61(10), 1429–1436 (2001)

    Article  Google Scholar 

  26. Bahei-El-Din, Y.A., Zikry, M.A.: Impact-induced deformation fields in 2D and 3D woven composites. Compos. Sci. Technol. 63(7), 923–942 (2003)

    Article  Google Scholar 

  27. Sun, B., Liu, Y., Gu, B.: A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite. Compos. Part B 40(6), 552–560 (2009)

    Article  Google Scholar 

  28. Pankow, M., Waas, A., Yen, C.-F., Ghiorse, S.: Shock loading of 3D woven composites: A validated finite element investigation. Compos. Struct. 93(5), 1347–1362 (2011)

    Article  Google Scholar 

  29. Liu, Y., Si, X., Liu, P., Zhang, X.: Mesoscopic modeling and simulation of 3D orthogonal woven composites using material point method. Compos. Struct. 203, 425–435 (2018)

    Article  Google Scholar 

  30. Muñoz, R., Martínez-Hergueta, F., Gálvez, F., González, C., LLorca, J.: Ballistic performance of hybrid 3D woven composites: experiments and simulations. Compos. Struct. 127, 141–151 (2015)

    Article  Google Scholar 

  31. Abaqus, A. Theory and User–s manuals. Dassault systems, Waltham (2016)

    Google Scholar 

  32. Dávila, C.G., Camanho, P.M.P.R.d., Travesa, T., A.: Cohesive elements for shells. © NASA TP Technical Reports, 2007, núm. 214869 (2007)

  33. Shivakumar, K., Elber, W., Illg, W.: Prediction of impact force and duration due to low-velocity impact on circular composite laminates. (1985)

  34. Ambur, D.R., Starnes, J.H. Jr., Prasad, C.B.: Influence of transverse-shear and large-deformation effects on the low-speed impact response of laminated composite plates. (1993)

  35. Chattopadhyay, S.: Response of elastic plates to impact including the effects of shear deformation. Recent advances in engineering science 127 (1977)

  36. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  CAS  Google Scholar 

  37. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  38. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  Google Scholar 

  39. Matzenmiller, A., Lubliner, J., Taylor, R.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20(2), 125–152 (1995)

    Article  Google Scholar 

  40. Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. (2002)

Download references

Acknowledgements

This research is financially supported by National Natural Science Foundation of China (11702326) and Shaanxi Provincial Natural Science Foundation (2018JM5177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitao Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Zheng, X., Zhang, D. et al. Impact Response of Carbon/Kevlar Hybrid 3D Woven Composite Under High Velocity Impact: Experimental and Numerical Study. Appl Compos Mater 27, 285–305 (2020). https://doi.org/10.1007/s10443-020-09809-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09809-3

Keywords

Navigation