Skip to main content
Log in

Numerical Analysis on Process-Induced Residual Stress in Thick Semi-Cylindrical Composite Shell Using a State-Dependent Viscoelastic Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A two-step state-dependent analysis model corresponding to the flow state before gelation and the viscoelastic state after gelation was proposed for the prediction of the residual stresses developed in polymer matrix composites (PMCs) during cure. The evolution of the viscoelasticity of PMCs during cure was analyzed based on the non-dimensional viscoelasticity parameters 1/Dem, and the gelation time was determined at the condition of Min(1/Dem) = 102. The proposed model was used to predict the process-induced residual stress and distortion in a thick semi-cylindrical composite shell. By comparing the predictions with those of the original cure-dependent viscoelastic model, the proposed model was verified and the computing time and memory storage were significantly reduced. The results show that during the cure of thick semi-cylindrical composite shell, the residual stresses caused by the cure shrinkage at high cure temperature are quickly relaxed, and most of the residual stress develops during cool-down. The spring-in deformation of the semi-cylindrical shell when release from the mould is mainly caused by the significant hoop stress gradient in the thickness direction developed during cure. Obvious warpage is not present in the composite semi-cylindrical shell due to the high bending stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, Y.K., White, S.R.: Viscoelastic analysis of processing-induced residual stresses in thick composite laminates. Mech. Compos. Mater. Struct. 4, 361–387 (1997)

    Article  Google Scholar 

  2. Anandan, S., Dhaliwal, G.S., Huo, Z., Chandrashekhara, K., Apetre, N., Iyyer, N.: Curing of thick thermoset composite laminates: multiphysics modeling and experiments. Appl. Compos. Mater. 11, 1–14 (2017)

    Google Scholar 

  3. Sekine, H., Shin, E.S.: Optimum design of thick-walled multi-layered cfrp pipes to reduce process-induced residual stresses. Appl. Compos. Mater. 6, 289–307 (1999)

    Article  Google Scholar 

  4. Esposito, L., Sorrentino, L., Penta, F., Bellini, C.: Effect of curing overheating on interlaminar shear strength and its modelling in thick FRP laminates. Int. J. Adv. Manuf. Technol. 87, 2213–2220 (2016)

    Article  Google Scholar 

  5. Kim, K.S., Hahn, H.T.: Residual stress development during processing of graphite/epoxy composites. Compos. Sci. Technol. 36, 121–132 (1989)

    Article  Google Scholar 

  6. Lu, Y., Li, Y., Li, N., Wu, X.: Reduction of composite deformation based on tool-part thermal expansion matching and stress-free temperature theory. Int. J. Adv. Manuf. Technol. 88, 1703–1710 (2017)

    Article  Google Scholar 

  7. Baran, I., Çinar, K., Ersoy, N., Akkerman, R., Hattel, J.H.: A review on the mechanical modeling of composite manufacturing processes. Arch. Computat. Methods Eng. 24(2), 365–395 (2017)

    Article  Google Scholar 

  8. Bogetti, T.A., Gillespie Jr., J.W.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26, 626–660 (1992)

    Article  Google Scholar 

  9. Çinar, K., Ersoy, N.: 3D finite element model for predicting manufacturing distortions of composite parts. J. Compos. Mater. 50(27), 1–17 (2016)

    Article  Google Scholar 

  10. Johnston, A., Vaziri, R., Poursartip, A.: A plane strain model for process-induced deformation of laminated composite structures. J. Compos. Mater. 35, 1435–1469 (2001)

    Article  Google Scholar 

  11. Ding, A., Li, S., Sun, J., Wang, J., Zu, L.: A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws. J. Reinf. Plast. Compos. 35(10), 807–823 (2016)

    Article  Google Scholar 

  12. White, S.R., Hahn, H.T.: Process modeling of composite materials: residual stress development during cure. Part I model formulation. J. Compos. Mater. 26, 2402–2422 (1992)

    Article  Google Scholar 

  13. Zhu, Q., Geubelle, P.H., Li, M., Tucker, III C.L.: Dimensional accuracy of thermoset composites: simulation of process-induced residual stresses. J. Compos. Mater. 35, 2171–2205 (2001)

  14. White, S.R., Kim, Y.K.: Process-induced residual stress analysis of AS4/3501-6 composite material. Mech. Compos. Mater. Struct. 5, 153–186 (1998)

    Article  Google Scholar 

  15. Kim, Y.K., White, S.R.: Process-induced stress relaxation analysis of AS4/3501–6 laminate. J. Reinf. Plast. Comp. 16, 2–16 (1997)

  16. Brauner, C., Bauer, S., Herrmann, A.S.: Analysing process-induced deformation and stresses using a simulated manufacturing process for composite multispar flaps. J. Compos. Mater. 49, 387–402 (2015)

    Article  Google Scholar 

  17. Li, J., Yao, X.F., Liu, Y.H., Cen, Z.Z., Kou, Z.J., Hu, X.C., Dai, D.: Thermo-viscoelastic analysis of the integrated T-shaped composite structures. Compos. Sci. Technol. 70, 1497–1503 (2010)

    Article  Google Scholar 

  18. Svanberga, J.M., Holmberg, J.A.: Prediction of shape distortions part I. FE-implementation of a path dependent constitutive model. Compos. A: Appl. Sci. Manuf. 35, 711–721 (2004)

    Article  Google Scholar 

  19. Ersoy, N., Garstka, T., Potter, K., Wisnom, M.R., Porter, D., Stringer, G.: Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite. Compos. A: Appl. Sci. Manuf. 41, 410–418 (2010)

    Article  Google Scholar 

  20. Zobeiry, N., Vaziri, R., Poursartip, A.: Differential implementation of the viscoelastic response of a curing thermoset matrix for composites processing. J. Eng. Mater.-T. ASME. 128(1), 90–95 (2006)

    Article  Google Scholar 

  21. Galińska, A.: Material models used to predict spring-in of composite elements: a comparative study. Appl. Compos. Mater. 24, 159–170 (2017)

    Article  Google Scholar 

  22. Fiorina, M., Seman, A., Castanie, B., Ali, K.M., Schwob, C., Mezeix, L.: Spring-in prediction for carbon/epoxy aerospace composite structure. Compos. Struct. 168, 739–745 (2017)

    Article  Google Scholar 

  23. Fernlund, G., Osooly, A., Poursartip, A., Vaziri, R., Courdji, R., Nelson, K., George, P., Hendrickson, L., Griffith, J.: Finite element based prediction of process-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis. Compos. Struct. 62, 223–234 (2003)

    Article  Google Scholar 

  24. Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K., Nelson, K.: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. A: Appl. Sci. Manuf. 33, 341–351 (2002)

    Article  Google Scholar 

  25. Dong, C.: Experimental investigation on the fiber preform deformation due to mold closure for composites processing. Int. J. Adv. Manuf. Technol. 71, 585–591 (2014)

    Article  Google Scholar 

  26. Wisnom, M.R., Ersoy, N., Potter, K.D.: Shear-lag analysis of the effect of thickness on spring-in of curved composites. J. Compos. Mater. 41, 1311–1324 (2007)

    Article  Google Scholar 

  27. Wisnom, M.R., Gigliotti, M., Ersoy, N., Campbell, M., Potter, K.D.: Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures. Compos. A: Appl. Sci. Manuf. 37, 522–529 (2006)

    Article  Google Scholar 

  28. Kappel, E., Stefaniak, D., Hühne, C.: Process distortions in prepreg manufacturing an experimental study on CFRP L-profiles. Compos. Struct. 106, 615–625 (2013)

    Article  Google Scholar 

  29. Ding, A., Li, S., Wang, J., Ni, A., Sun, L., Chang, L.: Prediction of process-induced distortions in L-shaped composite profiles using path-dependent constitutive law. Appl. Compos. Mater. 23, 1027–1045 (2016)

    Article  Google Scholar 

  30. Zhang, J.T., Zhang, M., Li, S.X., Pavier, M.J., Smith, D.J.: Residual stresses created during curing of a polymer matrix composite using a viscoelastic model. Compos. Sci. Technol. 130, 20–27 (2016)

    Article  Google Scholar 

  31. Sun, Y., Wang, Y., Jang, C.: Generalized hybrid modeling to determine chemical shrinkage and modulus evolutions at arbitrary temperatures. Exp. Mech. 53(9), 1783–1790 (2013)

    Article  Google Scholar 

  32. Ersoy, N., Garstka, T., Potter, K., Wisnom, M.R., Porter, D., Clegg, M., Stringer, G.: Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos. A: Appl. Sci. Manuf. 41, 401–409 (2010)

    Article  Google Scholar 

  33. Msallem, Y.A., Jacquemin, F., Poitou, A.: Residual stresses formation during the manufacturing process of epoxy matrix composites: resin yield stress and anisotropic chemical shrinkage. Int. J. Mater. Form. 3(S2), S1363–S1372 (2010)

    Article  Google Scholar 

  34. Msallem, Y.A., Jacquemin, F., Boyard, N., Poitou, A., Delaunay, D., Chatel, S.: Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites. Compos. A: Appl. Sci. Manuf. 41, 108–115 (2010)

    Article  Google Scholar 

  35. Ersoy, N., Potter, K., Wisnom, M.R., Clegg, M.J.: An experimental method to study the frictional processes during composites manufacturing. Compos. A: Appl. Sci. Manuf. 36, 1536–1544 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 2018IB004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qiao, Y., Zhang, M. et al. Numerical Analysis on Process-Induced Residual Stress in Thick Semi-Cylindrical Composite Shell Using a State-Dependent Viscoelastic Model. Appl Compos Mater 26, 519–532 (2019). https://doi.org/10.1007/s10443-018-9722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9722-0

Keywords

Navigation