Skip to main content
Log in

Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A new fibre metal laminate fabricated with aluminium sheets and unidirectionally arrayed chopped strand (UACS) plies is proposed. The UACS ply is made by cutting parallel slits into a unidirectional carbon fibre prepreg. The UACS/Al laminate may be viewed as aluminium laminate reinforced by highly aligned, discontinuous carbon fibres. The tensile behaviour of UACS/Al laminate, including thermal residual stress and failure progression, is investigated through experiments and numerical simulation. Finite element analysis was used to simulate the onset and propagation of intra-laminar fractures occurring within slits of the UACS plies and delamination along the interfaces. The finite element models feature intra-laminar cohesive elements inserted into the slits and inter-laminar cohesive elements inserted at the interfaces. Good agreement are obtained between experimental results and finite element analysis, and certain limitations of the finite element models are observed and discussed. The combined experimental and numerical studies provide a detailed understanding of the tensile behaviour of UACS/Al laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Taketa, I., Okabe, T., Matsutani, H., Kitano, A.: Flowability of unidirectionally arrayed chopped strands in compression molding. Compos. Part B 42, 1764–1769 (2011)

    Article  Google Scholar 

  2. Feraboli, P., Peitso, E., Cleveland, T., Stickler, P., Halpin, J.C.: Notched behavior of prepreg-based discontinuous carbon fiof /epoxy systems. Compos. Part A 40, 289–299 (2009)

    Article  Google Scholar 

  3. Feraboli, P., Cleveland, T., Ciccu, M., Stickler, P., Deoto, L.: Defect and damage analysis of advanced discontinuous carbon/epoxy composite materials. Compos. Part A 41, 888–901 (2010)

    Article  Google Scholar 

  4. Taketa, I., Okabe, T., Kitano, A.: A new compression-molding approach using unidirectionally arrayed chopped strands. Compos. Part A 39, 1884–1890 (2008)

    Article  Google Scholar 

  5. Taketa, I., Okabe, T., Kitano, A.: Strength improvement in unidirectional arrayed chopped strands with interlaminar toughening. Compos. Part A 40, 1174–1178 (2009)

    Article  Google Scholar 

  6. Taketa, I., Sato, N., Kitano, A., Nishikawa, M., Okabe, T.: Enhancement of strength and uniformity in unidirectionally arrayed chopped strands with angled slits. Compos. Part A 41, 1639–1646 (2010)

    Article  Google Scholar 

  7. Yashiro, S., Ogi, K.: Fracture behavior in CFRP cross-ply laminates with initially cut fibers. Compos. Part A 40, 938–947 (2009)

    Article  Google Scholar 

  8. Li, H., Wang, W.X., Takao, Y., Matsubara, T.: New designs of unidiretionally arrayed chopped strands by introducing discontinuous angled slits into prepreg. Compos. Part A 45, 127–133 (2013)

    Article  Google Scholar 

  9. Li, H., Wang, W.X., Takao, Y., Matsubara, T.: Multiscale analysis of damage progression in newly designed UACS laminates. Compos. Part A 57, 108–117 (2014)

    Article  Google Scholar 

  10. Asundi, A., Chroi, A.Y.N.: Fiber metal laminates: an advanced material for future aircraft. J. Mater. Process. Technol. 63, 384–394 (1997)

    Article  Google Scholar 

  11. Chen, J.F., Morozov, E.V., Shankar, K.: Progressive failure analysis of perforated aluminium/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects. Compos. Struct. 114, 64–79 (2014)

    Article  Google Scholar 

  12. Lin, C.T., Kao, P.W., Yang, F.S.: Fatigue behaviour of carbon fiber reinforced aluminium laminates. Compt. Rendus Geosci. 22, 135–141 (1991)

    Google Scholar 

  13. Khan, S.U., Alderliesten, R.C., Benedictus, R.: Post-stretching induced stress redistribution in fibre metal laminates for increased fatigue crack growth resistance. Compos. Sci. Technol. 69, 396–405 (2009)

    Article  Google Scholar 

  14. Cortes, P., Cantwell, W.J.: The fracture properties of a fibre-metal laminate based on magnesium alloy. Compos. Part B 37, 163–170 (2006)

    Article  Google Scholar 

  15. Cortes, P., Cantwell, W.J.: The tensile and fatigue properties of carbon fiber-reinforced PEEK-Titanium fiber-metal laminates. J. Reinf. Plast. Compos. 23, 1615–1623 (2004)

    Article  Google Scholar 

  16. Yamaguchi, T., Okabe, T., Yashiro, S.: Fatigue simulation for titanium/CFRP hybrid laminates using cohesive elements. Compos. Sci. Technol. 69, 1968–1973 (2009)

    Article  Google Scholar 

  17. Nakatani, H., Kosaka, T., Osaka, K., Sawda, Y.: Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Compos. Part A 42, 772–781 (2011)

    Article  Google Scholar 

  18. Thomas, J.: The A380 program-the big task for Europe’s aerospace industry. Air Space Eur. 3, 35–39 (2001)

    Article  Google Scholar 

  19. Wang, W.X., Takao, Y.: CFRP/Al-FRML Based on Nano-composite Coating and Its Mechanical Properties. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii, USA: 2007–2268.

  20. Xue, J., Wang, W.X., Takao, Y., Matsubara, T.: Reduction of thermal residual stress in carbon fiber aluminum laminates using a thermal expansion clamp. Compos. Part A 42, 986–992 (2011)

    Article  Google Scholar 

  21. ABAQUS-Inc. Defining the constitutive response of cohesive elements using atraction–separation description, Abaqus Analysis User’s Manual 6.10. Dassault Systèmes Simulia Corp., USA; 2010

  22. Xue, J.: Tensile strength and thermal residual stress of CARALL and UACS/Al laminates. Ph.D. dissertation. Department of Aeronautics and Astronautics, Kyushu University, Japan. 2012

  23. Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)

    Article  Google Scholar 

  24. Chen, J.F., Morozov, E.V., Shankar, K.: Simulating progressive failure of composite laminates including in-ply and delamination damage effects. Compos. Part A 61, 185–200 (2014)

    Article  Google Scholar 

  25. Chen, X., Deng, X.M., Sutton, M.A.:Simulation of stable tearing crack growth events using the cohesive zone model approach. Eng. Fract. Mech. 99, 223–238 (2013)

Download references

Acknowledgments

This study was partially supported by Grant-in Aid for Scientific Research (B) (22360052) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, WX., Zhang, JZ. et al. Experimental and Numerical Study on the Tensile Behaviour of UACS/Al Fibre Metal Laminate. Appl Compos Mater 22, 489–505 (2015). https://doi.org/10.1007/s10443-014-9419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9419-y

Keywords

Navigation