Skip to main content
Log in

Effect of Nesting on the Out-of-Plane Permeability of Unidirectional Fabrics in Resin Transfer Molding

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The nesting of layers has great effect on the permeability which is a key parameter in resin transfer molding (RTM). In this paper, two mathematical models were developed to predict the out-of-plane permeability of unidirectional fabrics with minimum and maximum nesting, respectively. For different zones of characteristic yarn arrangement in the unit cell, the local permeability was modeled as a function of geometrical yarn parameters. The global permeability was then modeled as a mixture of permeabilities of different zones with the electrical resistance analogy. The influences of local permeability of each zone on the global value of unit cell were deeply researched. In addition, two different fabrics were tested and a reasonably good agreement was found between the model predictions and experimental results. We also found that the permeability values were two orders of magnitude larger with minimum nesting than with maximum nesting. However, the differences between minimum nesting and maximum nesting decreased with increasing fiber volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Schell, J.S.U., Siegrist, M., Ermanni, P.: Experimental determination of the transversal and longitudinal fibre bundle permeability. Appl. Compos. Mater. 14(2), 117–128 (2007)

    Article  Google Scholar 

  2. Visconti, I.C., Langella, A., Durante, M.: Analysis of transversal permeability for different types of glass fiber reinforcement. Appl. Compos. Mater. 10(2), 119–127 (2003)

    Article  Google Scholar 

  3. Parnas, R.S.: Liquid composite molding. Carl Hanser, Munchen (2000)

    Book  Google Scholar 

  4. Gascons, M., Blanco, N., Mayugo, J.A., Matthys, K.: A strategy to support design processes for fibre reinforced thermoset composite materials. Appl. Compos. Mater. 19(3–4), 297–314 (2012)

    Article  Google Scholar 

  5. Young, W.B.: A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer. Appl. Compos. Mater. 20(6), 1305–1319 (2013)

    Article  Google Scholar 

  6. Turner, D.Z., Hjelmstad, K.D.: Determining the 3D permeability of fibrous media using the Newton method. Compos. Part B 36(8), 609–618 (2005)

    Article  Google Scholar 

  7. Zhou, F., Kuentzer, N., Simacek, P., Advani, S.G., Walsh, S.: Analytic characterization of the permeability of dual-scale fibrous porous media. Compos. Sci. Technol. 66(55), 2795–2803 (2006)

    Article  Google Scholar 

  8. Kuentzer, N., Simacek, P., Advani, S.G., Walsh, S.: Permeability characterization of dual scale fibrous porous media. Compos. Part A 37(11), 2057–2068 (2006)

    Article  Google Scholar 

  9. Amico, S., Lekakou, C.: An experimental study of the permeability and capillary pressure in resin-transfer moulding. Compos. Sci. Technol. 61(13), 1945–1959 (2001)

    Article  Google Scholar 

  10. Han, K.K., Lee, C.W., Rice, B.P.: Measurement of the permeability of fiber performs and applications. Compos. Sci. Technol. 60, 2435–2441 (2000)

    Article  Google Scholar 

  11. Verheus, A.S., Peeters, J.H.A.: The role of reinforcement permeability in resin transfer moulding. Compos. Manuf. 4(1), 33–38 (1993)

    Article  Google Scholar 

  12. Luthy, T., Landert, M., Ermanni, P.: 1d-permeability measurements based on ultrasound and linear direct current resistance monitoring techniques. J. Mater. Process. Manuf. Sci. 10, 25–43 (2001)

    Google Scholar 

  13. Lomov, S.V., Verpoest, I., Peeters, T., Roose, D., Zako, M.: Nesting in textile laminates: geometrical modelling of the laminate. Compos. Sci. Technol. 63(7), 993–1007 (2003)

    Article  Google Scholar 

  14. Hoes, K., Dinescu, D., Vanheule, M., Sol, H., Parnas, R.S., Belov, E.: Statistical distribution of permeability values of different porous materials. In: Proceedings of the 10th European conference on composite materials, Brugge (2002)

  15. Dungan, F.D., Senoguz, M.T., Sastry, A.M., Faillaci, D.A.: Simulations and experiments on low-pressure permeation of fabrics: Part I—3D modeling of unbalanced fabric. J. Compos. Mater. 35(14), 1250–1284 (2001)

    Google Scholar 

  16. Senoguz, M.T., Dungan, F.D., Sastry, A.M., Klamo, J.T.: Simulations and experiments on low-pressure permeation of fabrics: Part II—The variable gap model and prediction of permeability. J. Compos. Mater. 35(14), 1285–1322 (2001)

    Google Scholar 

  17. Hoes, K., Dinescu, D., Sol, H., Parnas, R., Lomov, S.V.: Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Compos. Part A 35(12), 1407–1418 (2004)

    Article  Google Scholar 

  18. Endruweit, A., McGregor, P., Long, A.C., Johnson, M.S.: Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values. Compos. Sci. Technol. 66(11–12), 1778–1792 (2006)

    Article  Google Scholar 

  19. Endruweit, A., Long, A.C.: A model for the in-plane permeability of triaxially braided reinforcements. Compos. Part A 42(2), 165–172 (2011)

    Article  Google Scholar 

  20. Grujicic, M., Chittajallu, K.M., Walsh, S.: Effect of shear. Compaction and nesting on permeability of the orthogonal plain-weave fabric performs. Mater. Chem. Phys. 86(2), 358–369 (2004)

    Article  Google Scholar 

  21. Grujicic, M., Chittajallu, K.M., Walsh, S.: Lattice boltzmann method based computation of the permeability of the orthogonal plain-weave fabric performs. J. Mater. Sci. 41(23), 7989–8000 (2006)

    Article  Google Scholar 

  22. Lekakou, C., Edwards, S., Bell, G., Amico, S.C.: Computer modelling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics. Compos. Part A 37(6), 820–825 (2006)

    Article  Google Scholar 

  23. Jinlian, H., Yi, L., Xueming, S.: Study on void formation in multi-layer woven fabrics. Compos. Part A 35(5), 595 (2004)

    Article  Google Scholar 

  24. Pillai, K.M.: Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts. J. Compos. Mater. 38(23), 2097–2118 (2004)

    Article  Google Scholar 

  25. Fang, L.C., Jiang, J.J., Wang, J.B., Deng, C.: Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution. J. Reinf. Plast. Compos. (2014). doi:10.1177/0731684414533739

    Google Scholar 

  26. Tran, T., Comas-Cardona, S., Abriak, N.E., Binetruy, C.: Unified microporomechanical approach for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement. Compos. Sci. Technol. 70(9), 1410–1418 (2010)

    Article  Google Scholar 

  27. Song, Y.S., Heider, D., Youn, J.R.: Statistical characteristics of out-of-plane permeability for plain-woven structure. Poly. Compos. 30(10), 1465–1472 (2009)

    Article  Google Scholar 

  28. Breiling, B.K., Adams, D.O.: Effects of layer nesting on compression-loaded 2-D woven textile composites. J. Compos. Mater. 30(15), 1710–1728 (1996)

    Article  Google Scholar 

  29. Shady, E., Gowayed, Y.: Interlaminar shear stress distribution between nested layers of plain weave composites. Poly. Compos. 31(11), 1838–1845 (2010)

    Article  Google Scholar 

  30. Lomov, S., Verpoest, I., Peeters, T., Roose, D., Zako, M.: Nesting in textile laminates: geometrical modelling of the laminate. Compos. Sci. Technol. 63(7), 993–1007 (2002)

    Article  Google Scholar 

  31. Ni, J., Zhao, Y., Lee, L.J., Nakamura, S.: Analysis of two-regional flow in liquid composite molding. Polym. Compos. 18(2), 254–269 (1997)

    Article  Google Scholar 

  32. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26(8), 1100–1133 (1992)

    Article  Google Scholar 

  33. Merhi, D., Michaud, V., Kämpfer, L., Vuilliomenet, P., Månson, J.A.E.: Transverse permeability of chopped fibre bundle beds. Compos. Part A 38(3), 739–746 (2007)

    Article  Google Scholar 

  34. Chen, B., Chou, T.-W.: Compaction of woven-fabric performs: nesting and multi-layer deformation. Compos. Sci. Technol. 60(12–13), 2223–223 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by NPU Foundation for Fundamental Research (JC20110254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Jiang, J., Wang, J. et al. Effect of Nesting on the Out-of-Plane Permeability of Unidirectional Fabrics in Resin Transfer Molding. Appl Compos Mater 22, 231–249 (2015). https://doi.org/10.1007/s10443-014-9403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9403-6

Keywords

Navigation