Skip to main content
Log in

Effect of Nesting on the Permeability of Multilayer Unidirectional Fabrics

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Nesting of layers is the main source of the variations in permeability values in liquid composite molding (LCM) processes. In this paper, the permeability of unidirectional fabrics was modeled as a function of layer shift and geometrical yarn parameters to study the effect of nesting. Firstly, three different unit cells of two layers were modeled based on the range of layer shift and decomposed into zones of characteristic yarn arrangement, respectively. The overall permeability of each unit cell was then modeled as a mixture of local permeabilities of different zones with the electrical resistance analogy. Secondly, every two adjacent layers were regarded as porous media with different permeabilities. The permeability of multilayer unidirectional fabrics was then modeled with electrical resistance analogy. As the unpredictability of layer shifting in actual process, the statistical characteristics were analyzed theoretically and validated with experimental measurements. Excellent agreement was found between predictions and experiment data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Deng, C., Jiang, J., Liu, F., et al.: Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite. Appl. Surf. Sci. 357, 1274–1280 (2015)

    Article  Google Scholar 

  2. Fang, L.C., Jiang, J., Wang, J., et al.: Non-uniform capillary model for unidirectional fiber bundles considering pore size distribution. J. Reinf. Plast. Compos. 33(15), 1430–1440 (2014)

    Article  Google Scholar 

  3. Demaria, C., Ruiz, E., Trochu, F.: In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part I: experimental results. Polym. Compos. 28(6), 797–811 (2007)

    Article  Google Scholar 

  4. Deng, C., Jiang, J., Liu, F., et al.: Effects of electrophoretically deposited graphene oxide coatings on interfacial properties of carbon fiber composite. J. Mater. Sci. 50(17), 5886–5892 (2015)

    Article  Google Scholar 

  5. Ivanov, D.S., Lomov, S.V.: Compaction behaviour of dense sheared woven preforms: experimental observations and analytical predictions. Compos. Part A 64(21), 167–176 (2014)

    Article  Google Scholar 

  6. Deng, C., Jiang, J., Liu, F., et al.: Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property. Surf. Coat. Technol. 272, 176–181 (2015)

    Article  Google Scholar 

  7. Nguyen, Q.T., Vidal-Sallé, E., Boisse, P., et al.: Mesoscopic scale analyses of textile composite reinforcement compaction. Compos. Part B 44(1), 231–241 (2013)

    Article  Google Scholar 

  8. Deng, C., Jiang, J., Liu, F., et al.: Influence of surface properties of graphene oxide/carbon fiber hybrid fiber by oxidative treatments combined with electrophoretic deposition. Surf. Interface Anal. 48, 212–217 (2016)

    Article  Google Scholar 

  9. Kruckenberg, T., Lin, Y., Paton, R., et al.: Static and vibration compaction and microstructure analysis on plain-woven textile fabrics. Compos. Part A 39(3), 488–502 (2008)

    Article  Google Scholar 

  10. Hoes, K., Dinescu, D., Sol, H., Parnas, R., Lomov, S.V.: Study of nesting induced scatter of permeability values in layered reinforcement fabrics. Compos. Part A 35(12), 1407–1418 (2004)

    Article  Google Scholar 

  11. Dungan, F.D., Senoguz, M.T., Sastry, A.M., Faillaci, D.A.: Simulations and experiments on low-pressure permeation of fabrics: Part I - 3D modeling of unbalanced fabric. J. Compos. Mater. 35(14), 1250–1284 (2001)

    Google Scholar 

  12. Senoguz, M.T., Dungan, F.D., Sastry, A.M., Klamo, J.T.: Simulations and experiments on low-pressure permeation of fabrics: Part II - The variable gap model and prediction of permeability. J. Compos. Mater. 35(14), 1285–1322 (2001)

    Google Scholar 

  13. Endruweit, A., McGregor, P., Long, A.C., Johnson, M.S.: Influence of the fabric architecture on the variations in experimentally determined in-plane permeability values. Compos. Sci. Technol. 66(11–12), 1778–1792 (2006)

    Article  Google Scholar 

  14. Endruweit, A., Long, A.C.: A model for the in-plane permeability of triaxially braided reinforcements. Compos. Part A 42(2), 165–172 (2011)

    Article  Google Scholar 

  15. Grujicic, M., Chittajallu, K.M., Walsh, S.: Effect of shear, compaction and nesting on permeability of the orthogonal plain-weave fabric performs. Mater. Chem. Phys. 86(2), 358–369 (2004)

    Article  Google Scholar 

  16. Grujicic, M., Chittajallu, K.M., Walsh, S.: Lattice Boltzmann method based computation of the permeability of the orthogonal plain-weave fabric preforms. J. Mater. Sci. 41(23), 7989–8000 (2006)

    Article  Google Scholar 

  17. Lekakou, C., Edwards, S., Bell, G., Amico, S.C.: Computer modelling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics. Compos. Part A 37(6), 820–825 (2006)

    Article  Google Scholar 

  18. Tran, T., Comas-Cardona, S., Abriak, N.E., et al.: Unified microporomechanical approach for mechanical behavior and permeability of misaligned unidirectional fiber reinforcement. Compos. Sci. Technol. 70(9), 1410–1418 (2010)

    Article  Google Scholar 

  19. Fang, L.C., Jiang, J., Wang, J., et al.: Effect of nesting on the out-of-plane permeability of unidirectional fabrics in resin transfer molding. Appl. Compos. Mater. 22(3), 1–19 (2015)

    Article  Google Scholar 

  20. Fang, L.C., Jiang, J., Wang, J., et al.: The effect of nesting on the in-plane permeability of unidirectional fabrics in resin transfer molding. Polym. Compos. (2015). doi:10.1002/pc.23342

    Google Scholar 

  21. Zeng, X., Endruweit, A., Brown, L.P., Long, A.C.: Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation. Compos A: Appli Sci Manuf 77:266–274 (2015)

  22. Ni, J., Zhao, Y., Lee, L.J., Nakamura, S.: Analysis of two-regional flow in liquid composite molding. Polym. Compos. 18(2), 254–269 (1997)

    Article  Google Scholar 

  23. Gebart, B.R.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26(8), 1100–1133 (1992)

    Article  Google Scholar 

  24. Chan, A.W., Hwang, S.T.: Anisotropic in-plane permeability of fabric media. Polym. Eng. Sci. 31, 1233–1239 (1991)

    Article  Google Scholar 

  25. Fang, L.C., Jiang, J., Wang, J., et al.: Effect of layer shift on the out-of-plane permeability of 0 / 90 noncrimp fabrics[J]. J. Reinf. Plast. Compos. 33(22), 2073–2094 (2014)

    Article  Google Scholar 

  26. Chen, B.X., Chou, T.W.: Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation. Compos. Sci. Technol. 59(10), 1519–1526 (1999)

    Article  Google Scholar 

  27. Chen, Z.R., Ye, L., Kruckenberg, T.: A Micromechanical compaction model for woven fabric preforms. Part I: single layer. Compos. Sci. Technol. 66, 3254–3262 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by National Nature Science Foundation of China (51573148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Su, Y., Zhou, L. et al. Effect of Nesting on the Permeability of Multilayer Unidirectional Fabrics. Appl Compos Mater 24, 625–642 (2017). https://doi.org/10.1007/s10443-016-9531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9531-2

Keywords

Navigation