Skip to main content
Log in

Finite Element Analysis of Layered Fiber Composite Structures Accounting for the Material’s Microstructure and Delamination

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The present paper focuses on composite structures which consist of several layers of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delamination constitutes one of the major failure modes. Predicting its initiation is essential for the design of these composites. Evaluating stress-strength relation based onset criteria requires an accurate representation of the through-the-thickness stress distribution, which can be particularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite element formulation is utilized which allows to incorporate a fully three-dimensional material model while still being suitable for applications involving thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration. The proposed anisotropic material model accounts for the material’s micro-structure by using the concept of structural tensors. It is validated by comparison to experimental data as well as by application to numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ladevze, P., Nouy, A.: On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Methods Appl. Mech. Eng. 192, 3061–3087 (2003)

    Article  Google Scholar 

  2. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M.: Multiscale second order computational homogenization of multi-phase materials: a nested finite element strategy. Comput. Methods Appl. Mech. Eng. 193, 5525–5550 (2004)

    Article  Google Scholar 

  3. Violeau, D., Ladevze, P., Lubineau, G.: Micromodel-based simulations for laminated composites. Compos. Sci. Technol. 69(9), 1364–1371 (2009)

    Article  Google Scholar 

  4. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Amsterdam (2005)

    Google Scholar 

  5. Kanoute, P., Boso, D.P., Chaboche, J.L., Schrefler, B.A.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16, 31–75 (2009)

    Article  Google Scholar 

  6. Klusemann, B., Svendsen, B.: Homogenization modeling of thin-layer-type microstructure. Int. J. Solids Struct. 49(13), 1828–1838 (2012)

    Article  Google Scholar 

  7. Holzapfel, G.A.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)

    Article  Google Scholar 

  8. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Royal Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  9. Ansar, M., Xinwei, W., Chouwei, Z.: Modeling strategies of 3D woven composites: a review. Compos. Struct. 93(8), 1947–1963 (2011)

    Article  Google Scholar 

  10. Lomov, S., Ivanov, D., Verpoest, I., et al.: Full-field strain measurements for validation of meso-FE analysis of textile composites. Compos. Part A 39(8), 1218–1231 (2008)

    Article  Google Scholar 

  11. Toledo, M., Nallim, L., Luccioni, B.: A micro-macromechanical approach for composite laminates. Mech. Mater. 40(11), 885–906 (2008)

    Article  Google Scholar 

  12. Reese, S.: Meso-macro modelling of fiber-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int. J. Solids Struct. 40, 951–980 (2003)

    Article  Google Scholar 

  13. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  14. Ye, L.: Role of matrix resin in delamination onset and growth in composite laminates. Compos. Sci. Technol. 33(4), 257–277 (1988)

    Article  Google Scholar 

  15. Davila, C.G., Johnson, E.R.: Analysis of delamination initiation in postbuckled dropped-ply laminates. AIAA J. 31, 721–727 (1993)

    Article  Google Scholar 

  16. Camanho, P.P., Matthews, F.L.: Delamination onset prediction in mechanically fastened joints. J. Compos. Mater. 33, 906–927 (1999)

    Article  Google Scholar 

  17. Turon, A., Camanho, P.P., Costa, J., Davila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)

    Article  Google Scholar 

  18. O’Brien, T.K.: Interlaminar fracture toughness: the long and winding road to standardization. Compos. Part B 29(1), 57–62 (1998)

    Article  Google Scholar 

  19. Liu, S.: Quasi-impact damage initiation and growth of thick-section and toughened composite materials. Int. J. Solids Struct. 31, 3079–3098 (1999)

    Google Scholar 

  20. Zou, Z., Reid, S.R., Li, S., Soden, P.D.: Modelling interlaminar and intralaminar damage in filament wound pipes under quasi-static indentation. J. Compos. Mater. 36, 477–499 (2002)

    Article  Google Scholar 

  21. Tay, T.: Characterization and analysis of delamination fracture in composites: an overview of developments rom 1990 to 2001. Appl. Mech. Rev. 56(1), 1–32 (2003)

    Article  Google Scholar 

  22. Krueger, R.: Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  23. de Borst, R., Remmers, J.J.C.: Computational modelling of delamination. Compos. Sci. Technol. 66, 713–722 (2006)

    Article  Google Scholar 

  24. Balzani, C., Wagner, W.: An interface element for the simulatino of delamination in unidirectional fiber-reinforced composite laminates. Eng. Fract. Mech. 75, 2597–2615 (2008)

    Article  Google Scholar 

  25. Cid Alfaro, M.V., Suiker, A.S.J., de Borst, R., Remmers, J.J.C.: Analysis of fracture and delamination in laminates using 3D numerical modelling. Eng. Fract. Mech. 76, 761–780 (2009)

    Article  Google Scholar 

  26. Whang, C., Zhang, H., Shi, G.: 3D Finite element simulatin of impact damage of laminated plates using solid-shell interface elements. Appl. Mech. Mater. 130–134, 766–770 (2012)

    Google Scholar 

  27. Valente, R., Alves de Sousa, R., Natal Jorge, R.: An enhanced strain 3D element for large deformation elastoplastic thin shell applications. Comput. Mech. 34, 38–52 (2004)

    Article  Google Scholar 

  28. Alves de Sousa, R., Cardoso, R., Valente, R., Yoon, J., Gracio, J., Natal Jorge, R.: A new one-point quadrature enhanced assumed strain (EAS) solid shell element with multiple integration points along thickness–Part II: nonlinear applications. Int. J. Numer. Methods Eng. 67, 160–188 (2006)

    Article  Google Scholar 

  29. Reese, S.: A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Methods Eng. 69, 1671–1716 (2007)

    Article  Google Scholar 

  30. Tan, X., Vu-Quoc, L.: Efficient and accurate multilayer solid-shell element: non-linear materials at finite strain. Int. J. Numer. Methods Eng. 63, 2124–2170 (2005)

    Article  Google Scholar 

  31. Kim, K., Liu, G., Han, S.: A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput. Mech. 35, 315–331 (2005)

    Article  Google Scholar 

  32. Klinkel, S., Gruttmann, F., Wagner, W.: A robust nonlinear solid-shell element based on a mixed variational formulation. Comput. Methods Appl. Mech. Eng. 195, 179–201 (2006)

    Article  Google Scholar 

  33. Cardoso, R., Yoon, J., Mahardika, M., Choudhry, S., Alves de Sousa, R., Valente, R.: Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int. J. Numer. Methods Eng. 75, 156–187 (2008)

    Article  Google Scholar 

  34. Schwarze, M., Reese, S.: A reduced integration solid-shell element based on the EAS and the ANS concept–geometrically linear problems. Int. J. Numer. Methods Eng. 80, 1322–1355 (2009)

    Article  Google Scholar 

  35. Schwarze, M., Vladimirov, I., Reese, S.: Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology. Comput. Methods Appl. Mech. Eng. 200, 454–476 (2011)

    Article  Google Scholar 

  36. Schwarze, M., Reese, S.: A reduced integration solid-shell finite element based on the EAS and the ANS concept - large deformation problems. Int. J. Numer. Methods Eng. 85, 289–329 (2011)

    Article  Google Scholar 

  37. Roy, T., Manikandan, P., Chakraborty, D.: Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures. Finite Elem. Anal. Des. 46(9), 710–720 (2010)

    Article  Google Scholar 

  38. Yao, L.-Q., Lu, L.: An electric node concept for solid-shell elements for laminate composite piezoelectric structures. ASME J. Appl. Mech. 72, 35–43 (2005)

    Article  Google Scholar 

  39. Moreira, R., Alves de Sousa, R., Valente, R.: A solid-shell layerwise finite element for non-linear geometric and material analysis. Compos. Struct. 92(6), 1517–1523 (2010)

    Article  Google Scholar 

  40. Rah, K., Van Paepegem, W., Habraken, A., Alves de Sousa, R., Valente, R.: Evaluation of different advanced finite element concepts for detailed stress analysis of laminated composite structures. Int. J. Mater. Form. 2(1), 943–947 (2009)

    Article  Google Scholar 

  41. Liu, P., Zheng, J.: Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater. Design 31(8), 3825–3834 (2010)

    Article  Google Scholar 

  42. Kreja, I.: A literature review on computational models for laminated composite and sandwich panels. Cent. Eur. J. Eng. 1(1), 59–80 (2011)

    Article  Google Scholar 

  43. Svendsen, B.: On the representation of constitutive relations using structure tensors. Int. J. Eng. Sci. 32, 1889–1892 (1994)

    Article  Google Scholar 

  44. FEAP 8.3: University of California. www.ce.berkeley.edu/feap (2011)

  45. Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int. J. Numer. Methods Eng. 40, 4427–4449 (1997)

    Article  Google Scholar 

  46. Camanho, P.P., Bowron, S., Matthews, F.L.: Failure mechanisms in bolted CFRP. J. Reinf. Plast. Compos. 17(3), 205–233 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Stier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stier, B., Simon, JW. & Reese, S. Finite Element Analysis of Layered Fiber Composite Structures Accounting for the Material’s Microstructure and Delamination. Appl Compos Mater 22, 171–187 (2015). https://doi.org/10.1007/s10443-013-9378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9378-8

Keywords

Navigation