Skip to main content
Log in

Characterisation by Inverse Techniques of Elastic, Viscoelastic and Piezoelectric Properties of Anisotropic Sandwich Adaptive Structures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this article we present recent developments regarding parameter estimation in sandwich structures with viscoelastic frequency dependent core and elastic laminated skin layers, with piezoelectric patch sensors and actuators bonded to the exterior surfaces of the sandwich. The frequency dependent viscoelastic properties of the core material are modelled using fractional derivative models, with unknown parameters that are to be estimated by an inverse technique, using experimentally measured natural frequencies and associated modal loss factors. The inverse problem is formulated as a constrained minimisation problem, and gradient based optimization techniques are employed. Applications are presented and discussed, focused on the identification of viscoelastic frequency dependent core material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: Finite element model for hybrid active-passive damping analysis of anisotropic laminated sandwich structures. J. Sandw. Struct. Mater. doi:10.1177/1099636209104534 (2010)

    Google Scholar 

  2. Moreira, R.A.S., Rodrigues, J.D., Ferreira, A.J.M.: A generalized layerwise finite element for multi-layer damping treatments. Comput. Mech. 37, 426–444 (2006)

    Article  MATH  Google Scholar 

  3. Moreira, R.A.S., Rodrigues, J.D.: A layerwise model for thin soft core sandwich plates. Comput. Mech. 84, 1256–1263 (2006)

    Google Scholar 

  4. Trindade, M.A., Benjeddou, A., Ohayon, R.: Finite element modelling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams - Part I: formulation. Int. J. Numer. Methods Eng. 51, 835–854 (2001)

    Article  MATH  Google Scholar 

  5. Boudaoud, H., Belouettar, S., Daya, E.M., Potier-Ferry, M.: A shell finite element for active-passive vibration control of composite structures with piezoelectric and viscoelastic layers. Mech. Adv. Mater. Struct. 15, 208–219 (2008)

    Article  Google Scholar 

  6. Mota Soares, C.M., Freitas, J.M., Araújo, A.L., Pedersen, P.: Identification of material properties of composite plate specimens. Compos. Struct. 25, 277–285 (1993)

    Article  ADS  Google Scholar 

  7. Araújo, A.L., Lopes, H.M.R., Vaz, M.A.P., Mota Soares, C.M., Herskovits, J., Pedersen, P.: Parameter estimation in active plate structures. Compos. Struct. 84, 1471–1479 (2006)

    Article  Google Scholar 

  8. Araújo, A.L., Mota Soares, C.M., Herskovits, J., Pedersen, P.: Estimation of piezoelectric and viscoelastic properties in laminated structures. Compos. Struct. 87, 168–174 (2009)

    Article  Google Scholar 

  9. Lekszycki, T., Olhoff, N., Pedersen, J.J.: Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos. Struct. 22, 15–31 (1992)

    Article  ADS  Google Scholar 

  10. Kostopoulos, V., Korontzis, D.T.: A new method for the determination of the viscoelastic properties of composite laminates: a mixed analytical-experimental approach. Compos. Sci. Technol. 63, 1441–1452 (2003)

    Article  CAS  Google Scholar 

  11. Castello, D.A., Rochinha, F.A., Roitman, N., Magluta, C.: Constitutive parameter estimation of a viscoelastic model with internal variables. Mech. Syst. Signal Process. 22, 1840–1857 (2008)

    Article  ADS  Google Scholar 

  12. Kim, S.-Y., Lee, D.-H.: Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs. J. Sound Vib. doi:10.1016/j.jsv.2009.02.040 (2009)

    Google Scholar 

  13. Barkanov, E., Skukis, E., Wesolowski, M., Chate, A.: Characterization of adhesive layers in sandwich composites by nondestructive technique. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 38 (2009)

  14. Dietrich, L., Lekszycki, T., Turski, K.: Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech. 126, 153–167 (1998)

    Article  MATH  Google Scholar 

  15. Sorensen, D.C.: Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations. Department of Computational and Applied Mathematics, Rice University, Houston, Texas, Technical Report TR95-13 (1995)

  16. Nashif, A.D., Jones, D.I.G., Henderson, J.P.: Vibration Damping. Wiley, New York (1985)

    Google Scholar 

  17. Elishakoff, I.: A selective review of direct, semi-inverse and inverse eigenvalue problems for structures described by differential equations with variable coefficients. Arch. Comput. Methods Eng. 7, 451–526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Herskovits, J., Mappa, P., Goulart, E., Mota Soares, C.M.: Mathematical programming models and algorithms for engineering design optimization. Comput. Methods Appl. Mech. Eng. 194, 3244–3268 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pedersen, P.: Concurrent Engineering Design of and with Advanced Materials. DCAMM Report No. S 56, Danish Center fos Applied Mathematics and Mechanics, Technical University of Denmark, Department of Solid Mechanics (1991)

  20. ASTM D150-98 Standard Test Methods for AC Loss Characteristics and Permitivity (Dielectric Constant) of Solid Electrical Insulation. American Society for Testing and Materials (1998)

  21. Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vib. 195, 103–115 (1996)

    Article  ADS  Google Scholar 

  22. Pritz, T.: Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 265, 935–952 (2003)

    Article  ADS  Google Scholar 

  23. Haftka, R.T., Gurdal, Z.: Elements of Structural Optimization. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of FCT(Portugal), through POCTI and POCI(2010)/FEDER, and CNPq(Brazil), CAPES(Brazil), and FAPERJ(Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio L. Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A. et al. Characterisation by Inverse Techniques of Elastic, Viscoelastic and Piezoelectric Properties of Anisotropic Sandwich Adaptive Structures. Appl Compos Mater 17, 543–556 (2010). https://doi.org/10.1007/s10443-010-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9142-2

Keywords

Navigation