Skip to main content
Log in

Effects of Anti-Oxidant Migration on Friction and Wear of C/C Aircraft Brakes

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The surfaces of carbon-carbon (C/C) aircraft brakes are usually coated with anti-oxidant to protect them from oxidation. These surfaces do not include the friction surfaces since it is known that when anti-oxidant get onto the friction surface, the friction coefficient decreases. The anti-oxidant migration (AOM), however, happens during processing, heat treatment and application. In this study, phosphorus based anti-oxidants inhibited 3-D C/C aircraft brake system was investigated. The effects of their migration on friction and wear in the 3-D C/C brakes were revealed by sub-scale dynamometer tests and microscopic analysis. Dynamometer results showed that when AOM occurred, both landing and taxi coefficients decreased in humid environment and the wear was slightly lowered. Microscopic study showed that under high humidity conditions there was no formation of the friction film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weaver, J.V.: Advanced materials for aircraft brakes. Aeronaut. J 76, 659–698 (1972)

    Google Scholar 

  2. Carbon-carbon materials and composites. Edited by: John D. Buckley and Dan D. Edie. Noyes Publications. (1993)

  3. Gomes, J.R., Silva, O.M., Silva, C.M., Pardini, L.C., Silva, R.F.: The effect of sliding speed and temperature of carbon-carbon composites. Wear 249, 240–245 (2001). doi:10.1016/S0043-1648(01)00554-3

    Article  CAS  Google Scholar 

  4. Blanco, C., Bermejo, J., Marsh, H., Menendez, R.: Chemical and physical properties of carbon as related to brake performance. Wear 213, 1–12 (1997). doi:10.1016/S0043-1648(97)00221-4

    Article  CAS  Google Scholar 

  5. Simon, I.L., Fisher, R.: Philos. Trans. R. Soc. Lond A294, 583–590 (1980). doi:10.1098/rsta.1980.0068

    ADS  Google Scholar 

  6. Cairo, C.A.A., Florian, M., Graca, M.L.A., Bressiani, J.C.: Kinetic study by TGA of the effect of oxidation inhibitors for carbon/carbon composite. Materials Science and Engineering 358, 298–303 (2003)

    Article  Google Scholar 

  7. Thebault, J., Lacoste, M., Nale, A.: Method of protecting products of composite material against oxidizing and products protected thereby. U.S. Patent 5, 622–751 (1997)

    Google Scholar 

  8. Tawil, H., Bernard, X., Cavalier, J.C.: Process for protecting products made of composite material containing carbon against oxidation, and products obtained by the said process. U.S. Patent 5, 725–955 (1998)

    Google Scholar 

  9. Lawrence, E.M., Norman, E.J.: Barrier coating and penetrants providing oxidation protection fro carbon-carbon materials. U.S. Patent 4, 837–073 (1989)

    Google Scholar 

  10. McKee, D.W.: Chemistry and Physics of Carbon 16, P. I. Walker and P. A. Thrower eds., Marcel Dekker, 1981, p. 30.

  11. Woodburn, J., Lynch, F.R.: Refractory carbon and method of producing the same. U.S. Patent 2, 685–539 (1954)

    Google Scholar 

  12. Forsythe, G.D., Walker, T.B.: Carbon barrier controlled metal infiltration layer for enhanced oxidation protection. U.S. Patent 6, 756–121 (2004)

    Google Scholar 

  13. Stover, E.R., Dietz, R.P.: Inhibition of catalyzed oxidation of carbon-carbon composites. U.S. Patent 5, 401–440 (1995)

    Google Scholar 

  14. Stover, E.R.: Method of inhibiting catalyzed oxidation of carbon-carbon composites. U.S. Patent 5, 759–622 (1998)

    Google Scholar 

  15. Stover, E.R.: Methods of inhibiting catalyzed oxidation of carbon-carbon composites using phosphoric acid, a zinc salt, and an aluminum salt and articles made therefrom. U.S. Patent 6, 551–709 (2003)

    Google Scholar 

  16. Walker, T.B., Booker, L.A.: Oxidation protection for carbon/carbon composites and graphites. U.S. Patent 6, 455–159 (2002)

    Google Scholar 

  17. Savage, G.: Carbon-Carbon Composites. Application of Carbon-Carbon composites. The Properties of Carbon-Carbon Composites, pp. 323–346. Chapman & Hall, London (1993)

    Google Scholar 

  18. Gomes, J.R., Silva, O.M., Silva, C.M., Pardini, L.C., Silva, R.F.: The effect of sliding speed and temperature of carbon-carbon composites. Wear 249, 240–245 (2001). doi:10.1016/S0043-1648(01)00554-3

    Article  CAS  Google Scholar 

  19. Blanco, C., Bermejo, J., Marsh, H., Menendez, R.: Chemical and physical properties of carbon as related to brake performance. Wear 213, 1–12 (1997). doi:10.1016/S0043-1648(97)00221-4

    Article  CAS  Google Scholar 

  20. Simon, I.L., Fisher, R.: Philos. Trans. R. Soc. Lond A 294, 583–590 (1980). doi:10.1098/rsta.1980.0068

    ADS  Google Scholar 

  21. Yen, B.K., Ishihara, T.: On temperature-dependent tribological regimes and oxidation of carbon-carbon composites up to 1800oC. Wear 196, 254–262 (1996). doi:10.1016/0043-1648(95)06903-8

    Article  CAS  Google Scholar 

  22. Blanco, C., Bermejo, J., Marsh, H., Renendez, R.: Chemial and physical properties of carbon as related to brake performance. Wear 213, 1–12 (1997). doi:10.1016/S0043-1648(97)00221-4

    Article  CAS  Google Scholar 

  23. Gomes, J.R., Silva, O.M., Silva, C.M., Pardini, L.C., Silva, R.F.: The effect if sliding speed and temperature on the tribological behavior of carbon-carbon composites. Wear 249, 240–245 (2001). doi:10.1016/S0043-1648(01)00554-3

    Article  CAS  Google Scholar 

  24. Christopher, B., Zhiyuan, W.: Influence of thermal properties on friction performance of carbon composites. Carbon 39, 1789–1801 (2001). doi:10.1016/S0008-6223(00)00296-7

    Article  Google Scholar 

  25. Hutton, T.J., Johnson, D., McEnaney, B.: Effects of fiber orientation on the tribology of a model carbon-carbon composite. Wear 249, 647–655 (2001). doi:10.1016/S0043-1648(01)00689-5

    Article  CAS  Google Scholar 

  26. Chen, J.D., Chen Lin, J.H., Ju, C.P.: Effect of humidity on the tribological behavior of carbon-carbon composites. Wear 193, 38–47 (1996). doi:10.1016/0043-1648(95)06667-5

    Article  CAS  Google Scholar 

  27. Chen, J.D., Ju, C.P.: Friction and wear of PAN/pitch-, PAN/CVI- and pitch/resin/CVI based carbon/carbon composites. Wear 174, 129–135 (1994). doi:10.1016/0043-1648(94)90094-9

    Article  ADS  CAS  Google Scholar 

  28. Yen, B.K., Ishihara, T.: The surface morphology and structure of carbon-carbon composites in high-energy sliding contact. Wear 174(1–2), 111–117 (1994)

    Article  CAS  Google Scholar 

  29. Lee, K.J., Chern Lin, J.H., Ju, C.P.: Surface effect on braking behavior of PAN-pitch carbon-carbon composite. Wear 199, 228–236 (1996). doi:10.1016/0043-1648(96)06962-1

    Article  CAS  Google Scholar 

  30. Tatarzycki, E.M., Webb, R.T.: Friction and wear of aircraft brakes. ASM Handbook, Friction, lubrication and wear technology 18, 582–586 (1992)

    Google Scholar 

  31. Shin, H.-K., Lee, H.-B., Kim, K.-S.: Tribological properties of pitch-based 2-D carbon-carbon composites. Carbon 39, 959–970 (2001). doi:10.1016/S0008-6223(00)00158-5

    Article  CAS  MathSciNet  Google Scholar 

  32. Lepage, J., Zaida, H.: In: Proceedings of 14th Leeds-Lyon. Symposium on interface dynamics. Elsevier, p. 259.(1988)

Download references

Acknowledgements

The authors would like to thank the Center for Advanced Friction Studies (CAFS) (http://fricationcenter.siu.edu) at Southern Illinois University, Carbondale for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarlen Don.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Don, J., Wang, Z. Effects of Anti-Oxidant Migration on Friction and Wear of C/C Aircraft Brakes. Appl Compos Mater 16, 73–81 (2009). https://doi.org/10.1007/s10443-008-9075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-008-9075-1

Keywords

Navigation