Skip to main content
Log in

Hopf Bifurcations in Directed Acyclic Networks of Linearly Coupled Hindmarsh–Rose Systems

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This paper addresses the existence of Hopf bifurcations in a directed acyclic network of neurons, each of them being modeled by a Hindmarsh–Rose (HR) neuronal model. The bifurcation parameter is the small parameter corresponding to the ratio of time scales between the fast and the slow dynamics. We first prove that, under certain hypotheses, the single uncoupled neuron can undergo a Hopf bifurcation. Hopf bifurcation occurrences in a directed acyclic network of HR neurons are then discussed. Numerical simulations are carried out to observe these bifurcations and to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arena P, Fortuna L, Frasca M, La Rosa M (2006) Locally active hindmarsh–rose neurons. Chaos Solitons Fractals 27(2):405–412

    Article  Google Scholar 

  • Buzzi C, Llibre J, Medrado J (2016) Hopf and zero-hopf bifurcations in the hindmarsh–rose system. Nonlinear Dyn 83(3):1549–1556

    Article  Google Scholar 

  • Corson N, Aziz-Alaoui M (2009) Asymptotic dynamics of hindmarsh–rose neuronal system. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms 16:535–549

    Google Scholar 

  • Crofts JJ, Higham DJ (2011) Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience. Internet Math 7(4):233–254

    Article  Google Scholar 

  • de Lange E (2006) Neuron models of the generic bifurcation type: network analysis. Thesis, EPFL

  • González-Miranda J (2007) Complex bifurcation structures in the hindmarsh–rose neuron model. Int J Bifurcat Chaos 17(09):3071–3083

    Article  Google Scholar 

  • Haken H (2008) Brain dynamics. An introduction to models and simulations. Springer, Berlin

    Google Scholar 

  • Harary F (2004) Graph theory. 1994. Addison-Wesley, Boston

    Google Scholar 

  • Hassard B, Wan Y (1978) Bifurcation formulae derived from center manifold theory. J Math Anal Appl 63(1):297–312

    Article  Google Scholar 

  • Hassard BD, Kazarinoff ND, Wan YH (1981) Theory and applications of Hopf bifurcation, volume 41 of London mathematical society lecture note series. Cambridge University Press, Cambridge

  • Hindmarsh J, Rose R (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164

    Article  Google Scholar 

  • Hindmarsh J, Rose R (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  Google Scholar 

  • Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the hindmarsh–rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos Interdiscip J Nonlinear Sci 17(4):043,128

    Article  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience. MIT press, Cambridge

    Google Scholar 

  • Li-Xia D, Qi-Shao L (2005) Codimension-two bifurcation analysis in hindmarsh–rose model with two parameters. Chin Phys Lett 22(6):1325

    Article  Google Scholar 

  • Lü J, Zhou T, Chen G, Zhang S (2002) Local bifurcations of the chen system. Int J Bifurc Chaos 12(10):2257–2270

    Article  Google Scholar 

  • MacKay R, Sepulchre JA (1995) Multistability in networks of weakly coupled bistable units. Phys D Nonlinear Phenom 82(3):243–254

    Article  Google Scholar 

  • Meyer CD (2000) Matrix analysis and applied linear algebra. Siam

  • Storace M, Linaro D, de Lange E (2008) The hindmarsh–rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos Interdiscip J Nonlinear Sci 18(3):033,128

    Article  Google Scholar 

  • Wang H, Wang Q, Lu Q, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled hr neurons with gap junction. Cognit Neurodyn 7(2):121–131

    Article  Google Scholar 

  • Zhou X, Wu Y, Li Y, Wei Z (2008) Hopf bifurcation analysis of the liu system. Chaos Solitons Fractals 36(5):1385–1391

    Article  Google Scholar 

Download references

Acknowledgments

The project is co-financed by the European Union with the European regional development fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lanza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corson, N., Lanza, V. & Verdière, N. Hopf Bifurcations in Directed Acyclic Networks of Linearly Coupled Hindmarsh–Rose Systems. Acta Biotheor 64, 375–402 (2016). https://doi.org/10.1007/s10441-016-9288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9288-x

Keywords

Navigation