Skip to main content
Log in

Exact Number of Peak Solutions for Nonlinear Schrödinger-Poisson Systems

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is concerned with the number of multi-peak solutions for the Schrödinger-Poisson system

$$ \left \{ \textstyle\begin{array}{lll} -\varepsilon ^{2} \Delta u + V(x) u + \Phi (x) u = |u|^{p-1} u, && \text{ in } \mathbb{R}^{3}, \\ - \Delta \Phi = u^{2}, && \text{ in } \mathbb{R}^{3}, \end{array}\displaystyle \right . $$

where \(\varepsilon \) is a parameter, \(p \in (1, 5)\) and \(V (x)\) is the potential function. We obtain the number of peak solutions for the system when the solutions concentrate at the critical points of \(V(x)\) through Pohozaev identities and the blow-up analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no data used in this paper.

References

  1. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzollini, A., Pomponio, A.: Ground state solution for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 346, 90–108 (2008)

    Article  MATH  Google Scholar 

  3. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benguria, R., Brézis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)

    Article  MATH  Google Scholar 

  7. Cao, D., Heinz, H.P.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243, 599–642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, D., Noussair, E.S., Yan, S.: Solutions with multiple-peaks for nonlinear elliptic equations. Proc. R. Soc. Edinb., Sect. A 129, 235–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, D., Li, S., Luo, P.: Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 4037–4063 (2015)

    Article  MATH  Google Scholar 

  10. Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 191. Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  11. Catto, I., Lions, P.L.: Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems. Commun. Partial Differ. Equ. 17, 1051–1110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  MATH  Google Scholar 

  13. Chen, L., Long, W., Ye, J.H.: Positive solutions and sign-changing solutions for a class of Schrödinger-Poisson systems. Preprint

  14. Colin, M., Watanabe, T.: A refined stability result for standing waves of the Schrödinger-Maxwell system. Nonlinearity 32, 3695–3714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Aprile, T.: Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic field. NoDEA Nonlinear Differ. Equ. Appl. 13, 655–681 (2007)

    Article  MATH  Google Scholar 

  16. D’Aprile, T., Mugnai, D.: Solitary waves for the nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb., Sect. A 134, 893–906 (2004)

    Article  MATH  Google Scholar 

  17. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. D’Aprile, T., Wei, J.: Boundary concentration in radial solutions to a system of semilinear elliptic equations. J. Lond. Math. Soc. 74, 415–440 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. D’Aprile, T., Wei, J.: Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem. Calc. Var. Partial Differ. Equ. 25, 105–137 (2006)

    Article  MATH  Google Scholar 

  20. Deng, Y.B., Lin, C.S., Yan, S.: On the prescribed scalar curvature problem in RN, local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glangetas, L.: Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. TMA 20, 571–603 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19, 261–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y., Li, B., Yan, S.: Exact number of single bubbling solutions for elliptic problems of Ambrosetti–Prodi type. Calc. Var. Partial Differ. Equ. 59, no. 80, 44pp (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Q., Lin, F.: Elliptic Partial Differential Equations. Courant Institute of Mathematical Sciences (1997)

    MATH  Google Scholar 

  26. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals (1). Math. Z. 27, 565–606 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012). 19 pages

    Article  MathSciNet  MATH  Google Scholar 

  28. Kwong, M.K.: Uniqueness of positive solutions of \(-\Delta u - u + u^{p} = 0\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  29. Li, B., Long, W., Tang, Z.W., Yang, J.G.: Uniqueness of positive bound states with multiple bumps for Schrödinger-Poisson system. Calc. Var. Partial Differ. Equ. 60, 240 (2021)

    Article  MATH  Google Scholar 

  30. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, P.L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Long, W., Xiong, Z.: Non-radial multipeak positive solutions for the Schrödinger-Poisson problem. J. Math. Anal. Appl. 455, 680–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  MATH  Google Scholar 

  34. Ruiz, D.: Semiclassical states for coupled Schrödinger-Maxell equations concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141–164 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimun of potential. Rev. Mat. Iberoam. 27, 253–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun, J.T., Wu, T., Feng, Z.S.: Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system. J. Differ. Equ. 260, 586–627 (2016)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

L. Chen acknowledges support from Jiangxi Provincial Natural Science Foundation (20212ACB201003). H.-S. Ding acknowledges support from Two Thousand Talents Program of Jiangxi Province (jxsq2019201001) and NSFC. Q. He acknowledges support from NSFC (12061012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Sheng Ding.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ding, HS. & He, Q. Exact Number of Peak Solutions for Nonlinear Schrödinger-Poisson Systems. Acta Appl Math 185, 8 (2023). https://doi.org/10.1007/s10440-023-00579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00579-1

Keywords

Mathematics Subject Classification

Navigation