Skip to main content
Log in

Three Scale Unfolding Homogenization Method Applied to Cardiac Bidomain Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we are dealing with a rigorous homogenization result at two different levels for the bidomain model of cardiac electro-physiology. The first level associated with the mesoscopic structure such that the cardiac tissue consists of extracellular and intracellular domains separated by an interface (the sarcolemma). The second one related to the microscopic structure in such a way that the intracellular medium can only be viewed as a periodical layout of unit cells (mitochondria). At the interface between intra- and extracellular media, the fluxes are given by nonlinear functions of ionic and applied currents. A rigorous homogenization process based on unfolding operators is applied to derive the macroscopic (homogenized) model from our meso-microscopic bidomain model. We apply a three-scale unfolding method in the intracellular problem to obtain its homogenized equation at two levels. The first level upscaling of the intracellular structure yields the mesoscopic equation. The second step of the homogenization leads to obtain the intracellular homogenized equation. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding method and a Kolmogorov-Riesz compactness’s result. Next, we use the standard unfolding method to homogenize the extracellular problem. Finally, we obtain, at the limit, a reaction-diffusion system on a single domain (the superposition of the intracellular and extracellular media) which contains the homogenized equations depending on three scales. Such a model is widely used for describing the macroscopic behavior of the cardiac tissue, which is recognized to be an important messengers between the cytoplasm (intracellular) and the other extracellular inside the biological cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdulle, A., Weinan, E.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Methods Phys. 191(1), 18–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A, Math. 126(2), 297–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amar, M., Andreucci, D., Bisegna, P., Gianni, R.: On a hierarchy of models for electrical conduction in biological tissues. Math. Methods Appl. Sci. 29(7), 767–787 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amar, M., Andreucci, D., Bisegna, P., Gianni, R., et al.: A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case. Differ. Integral Equ. 26(9/10), 885–912 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Arbogast, T., Douglas, J. Jr, Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bader, F., Bendahmane, M., Saad, M., Talhouk, R.: Derivation of a new macroscopic bidomain model including three scales for the electrical activity of cardiac tissue. J. Eng. Math. 131(1), 1–30 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bakhvalov, N.S., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, vol. 36. Springer, Berlin (2012)

    MATH  Google Scholar 

  10. Bellomo, N., Bellouquid, A., Herrero, M.A.: From microscopic to macroscopic description of multicellular systems and biological growing tissues. Comput. Math. Appl. 53(3–4), 647–663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bendahmane, M., Mroue, F., Saad, M., Talhouk, R.: Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology. Nonlinear Anal., Real World Appl. 50, 413–447 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 374. Am. Math. Soc., Providence (2011)

    MATH  Google Scholar 

  13. Bourgault, Y., Coudiere, Y., Pierre, C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal., Real World Appl. 10(1), 458–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourgeat, A., Luckhaus, S., Mikelić, A.: Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27(6), 1520–1543 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cioranescu, D., Damlamian, A., Donato, P., Griso, G., Zaki, R.: The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44(2), 718–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Math. 335(1), 99–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585–1620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cioranescu, D., Donato, P.: An Introduction to Homogenization, vol. 17. Oxford university press, Oxford (1999)

    MATH  Google Scholar 

  19. Cioranescu, D., Donato, P., Zaki, R.: The periodic unfolding method in perforated domains. Port. Math. 63(4), 467 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Colli-Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical and numerical methods for reaction-diffusion models in electrocardiology. In: Modeling of Physiological Flows, pp. 107–141. Springer, Berlin (2012)

    Chapter  Google Scholar 

  21. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical Cardiac Electrophysiology, vol. 13. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  22. Colli Franzone, P., Savaré, G.: Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis, pp. 49–78. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  23. Dobberschütz, S.: Homogenization of a diffusion-reaction system with surface exchange and evolving hypersurface. Math. Methods Appl. Sci. 38(3), 559–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  25. Gahn, M., Neuss-Radu, M.: A characterization of relatively compact sets in lp (\(\omega \), b). Stud. Univ. Babeş–Bolyai, Math. 61(3), 279–290 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Gahn, M., Neuss-Radu, M., Knabner, P.: Homogenization of reaction–diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface. SIAM J. Appl. Math. 76(5), 1819–1843 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Graf, I., Peter, M.A.: A convergence result for the periodic unfolding method related to fast diffusion on manifolds. C. R. Math. 352(6), 485–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Henriquez, C.S., Ying, W.: The bidomain model of cardiac tissue: from microscale to macroscale. In: Cardiac Bioelectric Therapy, pp. 401–421. Springer, Berlin (2009)

    Chapter  Google Scholar 

  29. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  30. Hubert, J.S., Palencia, E.S.: Introduction aux méthodes asymptotiques et à l’homogénéisation: application à la mécanique des milieux continus. Masson, Paris (1992)

    Google Scholar 

  31. Katz, A.M.: Physiology of the Heart. Williams & Wilkins, Baltimore (2010)

    Google Scholar 

  32. Koeppen, B.M., Stanton, B.A.: Berne Levy Physiology. Elsevier Health Sciences, Amsterdam (2009). Updated Edition E-Book

    Google Scholar 

  33. Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires (1969)

    MATH  Google Scholar 

  34. Meunier, N., Van Schaftingen, J.: Reiterated homogenization for elliptic operators. C. R. Math. 340(3), 209–214 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  MATH  Google Scholar 

  36. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  37. Neu, J., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21(2), 137–199 (1993)

    Google Scholar 

  38. Neuss-Radu, M., Jäger, W.: Effective transmission conditions for reaction-diffusion processes in domains separated by an interface. SIAM J. Math. Anal. 39(3), 687–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pierre, C.: Modélisation et simulation de l’activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis. Ph.D. thesis, Université de Nantes (2005)

  42. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8), 743–757 (1994)

    Article  Google Scholar 

  43. Tartar, L.: The General Theory of Homogenization: A Personalized Introduction, vol. 7. Springer, Berlin (2009)

    MATH  Google Scholar 

  44. Trucu, D., Chaplain, M., Marciniak-Czochra, A.: Three-scale convergence for processes in heterogeneous media. Appl. Anal. 91(7), 1351–1373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Veneroni, M.: Reaction–diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal., Real World Appl. 10(2), 849–868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his careful reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhrielddine Bader.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:  Compactness Result for the Space \(L^{p}(\varOmega ,B)\)

Appendix:  Compactness Result for the Space \(L^{p}(\varOmega ,B)\)

In this part, we give a characterization of relatively compact sets \(F\) in \(L^{p}(\varOmega , B)\) for \(p\in [1;+\infty )\), \(\varOmega \subset \mathbb{R}^{d}\) open and bounded set and \(B\) a Banach space.

Proposition 26

Kolmogorov-Riesz type compactness result

Let \(\varOmega \subset \mathbb{R}^{d}\) be an open and bounded set. Let \(F \subset L^{p}(\varOmega ,B)\) for a Banach space B and \(p\in [1;+\infty )\). For \(f\in F\) and \(h\in \mathbb{R}^{d}\), we define \(\tau _{h}f(x):=f(x+h)\). Then \(F\) is relatively compact in \(L^{p}(\varOmega ,B)\) if and only if

  1. (i)

    for every measurable set \(C\subset \varOmega \) the set \(\lbrace \int _{C} f dx \ : \ f \in F \rbrace \) is relatively compact in \(B\),

  2. (ii)

    for all \(\lambda >0\), \(h\in \mathbb{R}^{d}\) and \(h_{i}\geq 0\), \(i=1,\dots ,d\), there holds

    $$ \underset{f\in F}{\sup } \left \| \tau _{h}f-f\right \| _{L^{p} \left (\varOmega _{\lambda }^{h},B\right )}\rightarrow 0, \textit{ for } h \rightarrow 0, $$

    where \(\varOmega _{\lambda }^{h}:=\lbrace x\in \varOmega _{\lambda }: x+h \in \varOmega _{\lambda }\rbrace \) and \(\varOmega _{\lambda }:=\lbrace x\in \varOmega : dist(x,\partial \varOmega )> \lambda \rbrace \),

  3. (iii)

    for \(\lambda >0\), there holds \(\underset{f\in F}{\sup } \int _{\varOmega \setminus \varOmega _{\lambda }} \left |f(x)\right |^{p} dx\rightarrow 0\) for \(\lambda \rightarrow 0\).

Proof

The proof of the proposition can be found as Corollary 2.5 in [25]. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, F., Bendahmane, M., Saad, M. et al. Three Scale Unfolding Homogenization Method Applied to Cardiac Bidomain Model. Acta Appl Math 176, 14 (2021). https://doi.org/10.1007/s10440-021-00459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00459-6

Keywords

Mathematics Subject Classification (2010)

Navigation