Skip to main content
Log in

Stability of Wave Networks on Elastic and Viscoelastic Media

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the component configuration issue of the line-shaped wave networks which is made of two viscoelastic components and an elastic component and the viscoelastic parts produce the infinite memory and damping and distributed delay. The structural memory of viscoelastic component results in energy dissipative and the damping memory arouses the instability, and the elastic component is energy conservation, such a hybrid effects lead to complex dynamic behaviour of network. Our purpose of the present paper is to find out stability condition of such a network, in particular, the configuration condition of the wave network under which the network is exponentially stable. At first, using a resolvent family approach, we prove the well-posed of the wave network systems under suitable assumptions on the memory kernel \(g(s)\), the damping coefficient \(\mu _{1}\) and delay distributed kernel \(\mu _{2}(s)\). Next, using the Lyapunov function method, we seek for a structural condition of the wave networks under which the wave networks are exponentially stable. By constructing new functions we obtain the sufficient conditions for the exponential stability of the wave networks, the structural conditions are given as inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Pavlov, B.S., Faddeev, M.D.: Model of free electrons and the scattering problem. Theor. Math. Phys. 55(2), 485–492 (1983)

    Article  MathSciNet  Google Scholar 

  2. Mugnolo, D.: Gaussian estimates for a heat equation on a network. Netw. Heterog. Media 2(1), 55–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. D’Andréa-Novel, B., Coron, J.M., Bastin, G.: On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Netw. Heterog. Media 4(2), 177–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coron, J.M., Nguyen, H.M.: Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems. SIAM J. Math. Anal. 47(3), 2220–2240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kramar, M., Sikolya, E.: Spectral properties and asymptotic periodicity of flows in networks. Math. Z. 249(1), 139–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coclite, G.M., Garavello, M., Piccoli, B.: Traffic flow on a road network. SIAM J. Math. Anal. 36(6), 1862–1886 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Khanh, P.Q., Luu, L.M., Son, T.T.M.: Well-posedness of a parametric traffic network problem. Nonlinear Anal., Real World Appl. 14(3), 1643–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  9. Mehmeti, F., Below, J.V., Nicaise, S.: Partial Differential Equations on Multistructures. Dekker, New York (2001)

    Book  MATH  Google Scholar 

  10. Dáger, R., Zuazua, E.: Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures. Springer, New York (2006)

    Book  MATH  Google Scholar 

  11. Valein, J., Zuazua, E.: Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48(4), 2771–2797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, G.Q., Liu, D.Y., Liu, Y.Q.: Abstract second order hyperbolic system and applications to controlled network of strings. SIAM J. Control Optim. 47(4), 1762–1784 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, Y.X., Xu, G.Q.: Controller design for bush-type 1-D wave networks. ESAIM Control Optim. Calc. Var. 18(1), 208–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y.Q., Han, Z.J., Xu, G.Q.: Stability and spectral properties of general tree-shaped wave networks with variable coefficients. Acta Appl. Math. 164, 219–249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, G.Q., Mastorakis, N.E.: Differential Equations on Metric Graph. WSEAS, Athens (2010)

    Google Scholar 

  16. Leugering, G., Schmidt, E.J.P.G.: On the control of networks of vibrating strings and beams. Proc. IEEE Conf. Decis. Control 3, 2287–2290 (1989)

    Google Scholar 

  17. Ammari, K., Jellouli, M., Mehrenberger, M.: Feedback stabilization of a coupled string-beam system. Netw. Heterog. Media 4(1), 19–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ammari, K., Nicaise, S.: Polynomial and analytic stabilization of a wave equation coupled with an Euler-Bernoulli beam. Math. Methods Appl. Sci. 32(5), 556–576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, F., Wang, J.M.: Stability of an interconnected system of Euler-Bernoulli beam and wave equation through boundary coupling. Syst. Control Lett. 138, 1–8 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, X., Zuazua, E.: Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci., Sér. 1 Math. 336(10), 823–828 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal. 184(1), 49–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, X.L., Li, Y., Zheng, F.: Spectrum and stability of a 1-D heat-wave coupled system with dynamical boundary control. Math. Probl. Eng. 2019(12), 1–9 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Rivera, J.E.M., Oquendo, H.P.: The transmission problem of viscoelastic waves. Acta Appl. Math. 62(1), 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bastos, W.D., Raposo, C.A.: Transmission problem for waves with frictional damping. Electron. J. Differ. Equ. 2007(60), 1 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rivera, J.E.M.: Asymptotic behaviour in linear viscoelasticity. Q. Appl. Math. 52(4), 628–648 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Araújo, R.O., Ma, T.F., Qin, Y.M.: Long-time behavior of a quasilinear viscoelastic equation with past history. J. Differ. Equ. 254(10), 4066–4087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Messaoudi, S.A., Al-Gharabli, M.M.: A general stability result for a nonlinear wave equation with infinite memory. Appl. Math. Lett. 26(11), 1082–1086 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W.J., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65(1), 125–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, W.J., Chen, K.W.: Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions. Z. Angew. Math. Phys. 66(4), 1595–1614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12(4), 770–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21(9–10), 935–958 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Cavalcanti, M.M., Cavalcanti, V.N.D., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 44, 1 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Kirane, M., Said-Houari, B.: Existence and asymptotic stability of a viscoelastic wave equation with a delay. Z. Angew. Math. Phys. 62(6), 1065–1082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W.J.: General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback. J. Math. Phys. 54(4), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  36. Messaoudi, S.A., Fareh, A., Doudi, N.: Well posedness and exponential stability in a wave equation with a strong damping and a strong delay. J. Math. Phys. 57(11), 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, S.T.: Asymptotic behavior for a viscoelastic wave equation with a delay term. Taiwan. J. Math. 17(3), 765–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, G., Wang, D.H., Zhu, B.H.: Well-posedness and decay of solutions for a transmission problem with history and delay. Electron. J. Differ. Equ. 23, 1 (2016)

    MathSciNet  Google Scholar 

  39. Liu, G.W.: Well-posedness and exponential decay of solutions for a transmission problem with distributed delay. Electron. J. Differ. Equ. 174, 1 (2017)

    MathSciNet  Google Scholar 

  40. Cavalcanti, M.M., Coelho, E.R.S., Domingos, C.V.N.: Exponential stability for a transmission problem of a viscoelastic wave equation. Appl. Math. Optim. 81, 621–650 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, D.H., Li, G., Zhu, B.Q.: Well-posedness and general decay of solution for a transmission problem with viscoelastic term and delay. J. Nonlinear Sci. Appl. 9(3), 1202–1215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu, G.Q.: Resolvent Family for Evolution Process with Memory (2021, to appear)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 61773277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (NSFC 61773277).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Li, M. Stability of Wave Networks on Elastic and Viscoelastic Media. Acta Appl Math 175, 11 (2021). https://doi.org/10.1007/s10440-021-00437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00437-y

Keywords

Mathematics Subject Classification (2020)

Navigation