Skip to main content
Log in

Quantization of Edge Currents Along Magnetic Interfaces: A \(K\)-Theory Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the propagation of topological currents along magnetic interfaces (also known as magnetic walls) of a two-dimensional material. We consider tight-binding magnetic models associated to generic magnetic multi-interfaces and describe the \(K\)-theoretical setting in which a bulk-interface duality can be derived. Then, the (trivial) case of a localized magnetic field and the (non trivial) case of the Iwatsuka magnetic field are considered in full detail. This is a pedagogical preparatory work that aims to anticipate the study of more complicated multi-interface magnetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Due to the discreteness of \(\mathbb{Z}^{2}\) every function on \(\mathbb{Z}^{2}\) is automatically continuous. This provides the identification \(\mathcal{C}_{\mathrm{b}}(\mathbb{Z}^{2})\equiv \ell ^{\infty }(\mathbb{Z}^{2})\) where the symbol \(\mathcal{C}_{\mathrm{b}}(X)\) denotes the algebra of continuous bounded functions on \(X\).

  2. The proof of this theorem is adapted from [62, Theorem 5.5.7].

  3. The results provided in Lemma 2.18 are not optimal, in general. For instance, in the case of a zero magnetic field described in Example 2.10 one can replace (2.30) with \((1+r^{2}+s^{2})^{k}\|\widehat{\mathfrak{a}}_{r,s}\|^{2}\to 0\) when \((r,s)\to \infty \) [25, Theorem 3.3.9]. Moreover, the absolute convergence of the series of coefficients is generally guaranteed by a degree of regularity weaker than \(k>2\) [25, Theorem 3.3.16]. However, for the purposes of this work we will not need such a kind of generalization.

  4. Indeed, \(\Omega _{B}\) is a compact Polish space.

  5. By the Riesz-Markov-Kakutani representation theorem [56, Theorem IV.14], \(\mathrm{Mes}_{1,{\tau }^{*}}( \Omega _{B})\) provides the space of \({\tau }^{*}\)-invariant states of the Abelian \(C^{*}\)-algebra \(\mathcal{C}(\Omega _{B})\).

  6. The use of this terminology will be clarified in Definition 3.13.

  7. In terms of the additive notation of \(K_{1}(\mathcal{I})\), the trivial element is \([{\mathbf{1}}]=0\) and \(-[\mathfrak{u}]=[\mathfrak{u}^{*}]\) denotes the inverse of \([\mathfrak{u}]\).

  8. Observe that the set of self-adjoint operators \(\{\mathfrak{d}_{0},\mathfrak{d}_{1}\}\) which defines \(\mathfrak{p}_{\theta _{+}}\) is in principle different from the set of self-adjoint operators \(\{\mathfrak{d}_{0}',\mathfrak{d}_{1}'\}\) which defines \(\mathfrak{p}_{\theta _{-}}\).

References

  1. Akin, E., Carlson, J.D.: Conceptions of topological transitivity. Topol. Appl. 159, 2815–2830 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arici, F., Mesland, B.: Toeplitz extensions in noncommutative topology and mathematical physics. In: Kielanowski, P., Odzijewicz, A., Previato, E. (eds.) Geometric Methods in Physics XXXVIII. Trends in Mathematics Birkhäuser, Cham (2020)

    MATH  Google Scholar 

  3. Arveson, W.: An Invitation to \(C^{*}\)-Algebras. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Avron, J.E., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems I. General theory. J. Funct. Anal. 275, 2917–2977 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellissard, J.: K-theory of \(C^{*}\)-algebras in solid state physics. In: Dorlas, T.C., Hugenholtz, N.M., Winnink, M. (eds.) Statistical Mechanics and Field Theory: Mathematical Aspects. Lecture Notes in Physics, vol. 257, pp. 99–156 (1986)

    Chapter  Google Scholar 

  7. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourne, C., Kellendonk, J., Rennie, A.: The \(K\)-theoretic bulk–edge correspondence for topological insulators. Ann. Henri Poincaré 18, 1833–1866 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blackadar, B.E.: K-Theory for Operator Algebras. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  11. Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. Math. Phys. Anal. Geom. 21, 16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baum, P.F., Sánchez-García, J.: \(K\)-theory for group \(C^{*}\)-algebras. In: Topics in Algebraic and Topological \(K\)-Theory. LNM, vol. 2008, pp. 1–43. Springer, Berlin (2011)

    Chapter  Google Scholar 

  13. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)

    MATH  Google Scholar 

  14. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  15. Davidson, K.R.: \(C^{*}\)-Algebras by Example. Am. Math. Soc., Providence (1996)

    Book  MATH  Google Scholar 

  16. Dombrowski, G., Germinet, F., Raikov, G.: Quantization of edge currents along magnetic barriers and magnetic guides. Ann. Henri Poincaré 12, 1169–1197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dixmier, J.: \(C^{*}\)–Algebras. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  18. De Nittis, G., Lein, M.: Linear Response Theory. An Analytic-Algebraic Approach. SpringerBriefs in Mathematical Physics, vol. 21. Springer, Berlin (2017)

    MATH  Google Scholar 

  19. De Nittis, G., Schulz-Baldes, H.: Spectral flows associated to flux tubes. Ann. Henri Poincaré 17, 1–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229, 415–432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fröhlich, J., Graf, G.M., Walcher, J.: On the extended nature of edge states of quantum Hall Hamiltonians. Ann. Henri Poincaré 1, 405–442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gracia-Bondia, J.M., Varilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  23. Ghosh, T.K., De Martino, A., Häusler, W., Dell’Anna, L., Egger, R.: Conductance quantization and snake states in graphene magnetic waveguides. Phys. Rev. B 77, 081404 (2008)

    Article  Google Scholar 

  24. Georgescu, V., Iftimovici, A.: Crossed products of \(C^{*}\)-algebras and spectral analysis of quantum Hamiltonians. Commun. Math. Phys. 228, 519–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grafakos, L.: Classical Fourier Analysis. GTM, vol. 249. Springer, New York (2014)

    MATH  Google Scholar 

  26. Greenleaf, F.P.: Invariant Means on Topological Groups and Their Applications. Van Nostrand Reinhold Co., New York (1969)

    MATH  Google Scholar 

  27. Hatsugai, Y.: The Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  29. Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics, vol. 4. Springer, Berlin (1997)

    MATH  Google Scholar 

  30. Iwatsuka, A.: Examples of absolutely continuous Schrödinger operators in magnetic fields. RIMS Kokyuroku 21, 385–401 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  32. Kane, C.L., Moore, J.E.: Topological insulators. Phys. World 24, 32–36 (2011)

    Article  Google Scholar 

  33. Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kellendonk, J., Schulz-Baldes, H.: Quantization of edge currents of continuous magnetic operators. J. Funct. Anal. 209, 388–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolyada, S., Snoha, L.: Some aspects of topological transitivity. Grazer Math. Ber. 334, 3–35 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Kotani, M., Schulz-Baldes, H., Villegas-Blas, C.: Quantization of interface currents. J. Math. Phys. 55, 121901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  38. Kunz, H.: The quantum Hall effect for electrons in a random potential. Commun. Math. Phys. 112, 121–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2000)

    MATH  Google Scholar 

  40. Ludewig, M., Thiang, G.C.: Cobordism invariance of topological edge-following states. E-print (2020). arXiv:2001.08339

  41. Ludewig, M., Thiang, G.C.: Gaplessness of Landau Hamiltonians on hyperbolic half-planes via coarse geometry. Commun. Math. Phys. 386, 87–106 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, Y., Tiwari, R.P., Brada, M., Bruder, C., Kusmartsev, F.V., Mele, E.J.: Snake states and their symmetries in graphene. Phys. Rev. B 92, 235438 (2015)

    Article  Google Scholar 

  43. Moore, J.: The birth of topological insulators. Nature 464, 194–198 (2010)

    Article  Google Scholar 

  44. Murphy, G.J.: \(C^{*}\)-Algebras and Operator Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  45. Oroszlány, L., Rakyta, P., Kormányos, A., Lambert, C.J., Cserti, J.: Theory of snake states in graphene. Phys. Rev. B 77, 081403 (2008)

    Article  Google Scholar 

  46. Park, S., Sim, H.-S.: Magnetic edge states in graphene in nonuniform magnetic fields. Phys. Rev. B 77, 075433 (2008)

    Article  Google Scholar 

  47. Pedersen, G.K.: \(C^{*}\)-Algebras and Their Automorphism Groups. Academic Press, London (1979)

    MATH  Google Scholar 

  48. Prodan, E.: The edge spectrum of Chern insulators with rough boundaries. J. Math. Phys. 50, 083517 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  50. Pimsner, M., Voiculescu, D.: Imbedding the irrational rotation \(C^{*}\)-algebra into an \(AF\)-algebra. J. Oper. Theory 4, 201–210 (1980)

    MathSciNet  MATH  Google Scholar 

  51. Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext-groups of certain crossed products. J. Oper. Theory 4, 93–118 (1980)

    MATH  Google Scholar 

  52. Rieffel, M.: \(C^{*}\)-algebras associated with irrational rotations. Pac. J. Math. 93, 415–429 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rørdam, M., Larsen, F., Laustsen, N.: An Introduction to \(K\)-Theory for \(C^{*}\)-Algebras. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  54. Reijniers, J., Matulis, A., Chang, K., Peeters, F.M., Vasilopoulos, P.: Confined magnetic guiding orbit states. Europhys. Lett. 59, 749–753 (2002)

    Article  Google Scholar 

  55. Reijniers, J., Peeters, F.M.: Snake orbits and related magnetic edge states. J. Phys. Condens. Matter 12, 9771–9786 (2000)

    Article  Google Scholar 

  56. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  57. Schulz-Baldes, H., Bellissard, J.: Anomalous transport: a mathematical framework. Rev. Math. Phys. 10, 1–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schulz-Baldes, H., Kellendonk, J., Richter, T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A, Math. Gen. 33, L27 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Thiang, G.C.: Edge-following topological states. J. Geom. Phys. 156, 103796 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  Google Scholar 

  61. Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  62. Weaver, N.: Mathematical Quantization. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  63. Wegge-Olsen, N.E.: \(K\)-Theory and \(C^{*}\)-Algebras: A Friendly Approach. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  64. Williams, D.P.: Crossed Products of \(C^{*}\)-Algebras. Am. Math. Soc., Providence (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the grant Fondecyt Regular – 1190204. GD wants to thank François Germinet for the suggestion to look at this problem received several years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Nittis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Crossed Product Structure

In Sect. 2.3 we provided an explicit construction of the magnetic \(C^{*}\)-algebra \(\mathcal{A}_{A_{B}}\) associated to a vector potential \(A_{B}\) for the magnetic field \(B:\mathbb{Z}^{2}\to \mathbb{R}\). In this section we will show that the magnetic \(C^{*}\)-algebra \(\mathcal{A}_{A_{B}}\) is the ‘‘concrete’’ realization of an abstract twisted crossed product \(C^{*}\)-algebra over \(\mathbb{Z}^{2}\). For the general theory of the crossed product \(C^{*}\)-algebras we will refer to classic monographs [47, 64]. The special case of discrete crossed product \(C^{*}\)-algebras, which is the most related to our construction, is discussed in detail in [15, Chapter VIII].

Let \((\mathcal{C}(\Omega _{B}),\tau ,\mathbb{Z}^{2})\) be the \(C^{*}\)-dynamical system associated with the dynamical system \((\Omega _{B}, \tau ^{*},\mathbb{Z}^{2})\) described in Sect. 2.6. Consider a pair of (abstract) unitary elements \(u_{1}\), \(u_{2}\) and for every \(\gamma :=(\gamma _{1},\gamma _{2})\in \mathbb{Z}^{2}\) set \(u_{\gamma }:=u_{1}^{\gamma _{1}}u_{2}^{\gamma _{2}}\). Let \(\mathcal{C}(\Omega _{B})[\mathbb{Z}^{2}]\) be the set of finite sums

$$ G\;:=\;\sum _{\gamma \in \Lambda }g_{\gamma }\; u_{\gamma }$$

with \(g_{\gamma }\in \mathcal{C}(\Omega _{B})\) for all \(\gamma \in \Lambda \) and \(\Lambda \in \mathcal{P}_{0}(\mathbb{Z}^{2})\) a finite subset of \(\mathbb{Z}^{2}\). The product in \(\mathcal{C}(\Omega _{B})[\mathbb{Z}^{2}]\) is defined by the rules

$$ u_{2}\;u_{1}\;=\;\overline{f_{B}}\;u_{1}\;u_{2}\;,\qquad u_{\gamma }\;g \;u_{-\gamma }\;=\; \tau _{\gamma }(g) $$

for every \(\gamma \in \mathbb{Z}^{2}\) and \(g\in \mathcal{C}(\Omega _{B})\), where \(f_{B}:=\,\mathrm{e}^{\,\mathrm{i}\,B}\,\in \mathcal{C}(\Omega _{B})\) is the magnetic phase associated to \(B\). The involution is provided by

$$ (g\; u_{\gamma })^{*}\;:=\;u_{-\gamma }\;\overline{g}\;=\;\tau _{-\gamma } \big(\overline{g}\big)\;u_{-\gamma }\;. $$

Endowed with these operations \(\mathcal{C}(\Omega _{B})[\mathbb{Z}^{2}]\) acquires the structure of a unital ∗-algebra. Moreover it can be completed to a Banach ∗-algebra with respect to the norm

$$ \|G\|_{1}\;:=\;\sum _{\gamma \in \Lambda }\|g_{\gamma }\|_{\infty }\;. $$

The (universal) enveloping \(C^{*}\)-algebra [17, Sect. 2.7] obtained from this Banach ∗-algebra is called the \(B\)-twisted crossed product of \(\mathcal{C}(\Omega _{B})\) and is denoted with \(\mathcal{C}(\Omega _{B})\rtimes _{\tau ,B}\mathbb{Z}^{2}\).

In order to better understand the twisted structure of the crossed product \(\mathcal{C}(\Omega _{B})\rtimes _{\tau ,B}\mathbb{Z}^{2}\) one can observe that the mapping \(\gamma \mapsto u_{\gamma }\) provides a projective (abstract) unitary representation of \(\mathbb{Z}^{2}\) defined by

$$ u_{\gamma }\;u_{\xi }\;=\;\Theta _{B}(\gamma ,\xi )\;u_{\gamma +\xi }\;, \qquad \forall \; \gamma ,\xi \in \mathbb{Z}^{2}\;, $$

with phase given by

$$ \Theta _{B}(\gamma ,\xi )\;:=\;\prod _{\nu \in \Lambda (\gamma ,\xi )} \overline{\tau _{\nu }({f}_{B})} $$

and the product is extended on the finite cell

$$ \Lambda (\gamma ,\xi )\;:=\;\big([\gamma _{1},\gamma _{1}+\xi _{1}-1] \times [0,\gamma _{2}-1]\big)\;\cap \;\mathbb{Z}^{2}\;. $$

The map \(\Theta _{B}: \mathbb{Z}^{2}\times \mathbb{Z}^{2}\to \mathcal{U}( \mathcal{C}(\Omega _{B}))\) takes value on the unitary elements of \(\mathcal{C}(\Omega _{B})\) and a direct check shows that it satisfies the cocycle condition

$$ \Theta _{B}(\gamma +\xi ,\zeta )\; \Theta _{B}(\gamma ,\xi )\;=\; \tau _{\gamma }\big(\Theta _{B}(\xi ,\zeta )\big)\;\Theta _{B}(\gamma , \xi +\zeta ) $$

for all \(\gamma ,\xi ,\zeta \in \mathbb{Z}^{2}\).

Given a vector potential \(A_{B}\) for the magnetic field \(B\) one can consider the representation \(\pi _{A_{B}}:\mathcal{C}(\Omega _{B})\rtimes _{\tau ,B}\mathbb{Z}^{2} \to \mathcal{B}(\ell ^{2}(\mathbb{Z}^{2}))\) defined by

$$ \begin{aligned} \pi _{A_{B}}(u_{\gamma })\;&:=\;(\mathfrak{s}_{A_{B},1})^{\gamma _{1}} \;(\mathfrak{s}_{A_{B},2})^{\gamma _{2}} \\ \pi _{A_{B}}(g)\;&:=\;\iota ^{-1}(g) \end{aligned} \;,\qquad \forall \gamma \in \mathbb{Z}^{2}\;,\quad \forall g\in \mathcal{C}(\Omega _{B}) $$

where \(\mathfrak{s}_{A_{B},1}\), \(\mathfrak{s}_{A_{B},2}\) are the magnetic translations defined in Sect. 2.2 and \(\iota ^{-1}(g)\in \mathcal{F}_{B}\) is given by the isomorphism defined in Lemma 2.26. The map \(\pi _{A_{B}}\) coincides with the tensor product of the isomorphism \(\iota ^{-1}\) with the \(B\)-twisted (left) regular representation of \(\mathbb{Z}^{2}\). This representation turns out to be faithful (cf. [15, p. 218]) and as a consequence one gets

$$ \mathcal{A}_{A_{B}}\;=\;\pi _{A_{B}}\left (\mathcal{C}(\Omega _{B}) \rtimes _{\tau ,B}\mathbb{Z}^{2}\right )\;. $$

It is also interesting to observe that \(\mathcal{A}_{A_{B}}\) can be represented as an iterated crossed product algebra as discussed in [49, Sect. 3.1.1]. Indeed one can check that

$$ \mathcal{C}(\Omega _{B})\rtimes _{\tau ,B}\mathbb{Z}^{2}\;\simeq \; \mathcal{Y}_{B,j}\rtimes _{\alpha _{k}}\mathbb{Z}\;,\qquad \mathcal{Y}_{B,j} \;:=\;\mathcal{F}_{B}\rtimes _{\alpha _{j}}\mathbb{Z}, $$

where \(\{j,k\}=\{1,2\}\), the crossed product algebra \(\mathcal{Y}_{B,j}\) is generated by \(\mathcal{F}_{B}\) and \(u_{j}\) along with the relation

$$ \alpha _{j}(g):=u_{j} gu_{j}^{*}\;:=\;\left \{ \begin{aligned} &\tau _{(1,0)}(g)&\text{if }j=1 \\ &\tau _{(0,1)}(g)&\text{if }j=2 \end{aligned} \right \} \;=:\tau _{j}(g) $$

for all \(g\in \mathcal{C}(\Omega _{B})\) and the crossed product algebra \(\mathcal{Y}_{B,j}\rtimes _{\alpha _{k}}\mathbb{Z}\) is generated by \(\mathcal{Y}_{B,j}\) and \(u_{k}\) along with the relation \(\alpha _{k}(gu_{j}):=u_{k}(gu_{j})u_{k}^{*}=\tau _{k}(g)f_{B}u_{j}\) for all \(g\in \mathcal{F}_{B}\).

In the special case the magnetic field \(B\) is constant in the \(n_{2}\)-direction (as in the case of the Iwatsuka magnetic field) it follows that the \(\alpha _{2}\)-action is trivial, meaning that it reduces to the identity \(\alpha _{2}(g)=g\) for all \(g\in \mathcal{C}^{*}(\Omega _{B})\). In this situation the crossed product algebra \(\mathcal{Y}_{B,2}\) acquires the following very simple structure

$$ \mathcal{Y}_{B,2}\;\simeq \;\mathcal{C}^{*}(\Omega _{B})\otimes \;C^{*}_{r}( \mathbb{Z})\;\simeq \;\mathcal{C}^{*}(\Omega _{B})\otimes \mathcal{C}( \mathbb{S}^{1})\;\simeq \;\mathcal{C}(\Omega _{B}\times \mathbb{S}^{1}) $$

The first isomorphism involves the (reduced) group \(C^{*}\)-algebra \(C^{*}_{r}(\mathbb{Z})\) and is proved in [64, Lemma 2.73] (along with the nuclearity of the various \(C^{*}\)-algebras). The isomorphism \(C^{*}_{r}(\mathbb{Z})\simeq \mathcal{C}(\mathbb{S}^{1})\) is a consequence of the Pontryagin duality [15, Proposition VII.1.1].

Appendix B: The \(K\)-Theory of the Iwatsuka Magnetic Hull

Let \(\Omega _{I}=\mathbb{Z}\cup \{-\infty \}\cup \{+\infty \}\) be the Iwatsuka magnetic hull described in Example 2.24 and consider the short exact sequence

$$ 0\;\stackrel{}{\longrightarrow }\;\mathcal{C}_{0}(\mathbb{Z})\; \stackrel{\imath }{\longrightarrow }\;\mathcal{C}(\Omega _{I})\; \stackrel{\mathrm{ev}}{\longrightarrow }\mathbb{C}\oplus \mathbb{C}\; \stackrel{}{\longrightarrow }0 $$
(B.1)

where \(\mathcal{C}_{0}(\mathbb{Z})\) is the \(C^{*}\)-algebra of sequences vanishing at infinity, \(\imath \) is the inclusion homomorphism and the evaluation homomorphism \(\mathrm{ev}\) compute the left and right limits of elements in \(\mathcal{C}(\Omega _{I})\). The sequence (B.1) is split exact in view of the homomorphism

$$ \mathbb{C}\oplus \mathbb{C}\;\ni \;(\ell _{-},\ell _{+})\; \stackrel{\jmath }{\longrightarrow }\;c_{(\ell _{-},\ell _{+})}\;\in \; \mathcal{C}(\Omega _{I}) $$

where the element \(c_{(\ell _{-},\ell _{+})}\) is specified by

$$ c_{(\ell _{-},\ell _{+})}(n)\;:=\; \left \{ \begin{aligned} &\ell _{-}&\quad &\text{if}\quad n< 0 \\ &\ell _{+}&\quad &\text{if}\quad n\geqslant 0\;. \end{aligned} \right . $$

Then, it follows that [63, Corollary 8.2.2]

$$ K_{j}\big(\mathcal{C}(\Omega _{I})\big)\;\simeq \;K_{j}\big(\mathcal{C}_{0}( \mathbb{Z})\big)\;\oplus \;K_{j}\big(\mathbb{C}\oplus \mathbb{C} \big)\;,\qquad j=1,2\;. $$

The \(K\)-theory of \(\mathbb{C}\oplus \mathbb{C}\) is easily calculated as \(K_{0}(\mathbb{C}\oplus \mathbb{C})=\mathbb{Z}\oplus \mathbb{Z}\) and \(K_{1}(\mathbb{C}\oplus \mathbb{C})=0\). The \(K\)-theory of \(\mathcal{C}_{0}(\mathbb{Z})\) is given by \(K_{0}(\mathcal{C}_{0}(\mathbb{Z}))=\mathbb{Z}^{\oplus \mathbb{Z}}\) and \(K_{1}(\mathcal{C}_{0}(\mathbb{Z}))=0\). The latter fact follows from the isomorphism \(K_{j}(\mathcal{C}_{0}(\mathbb{Z}))\simeq K^{j}_{\mathrm{top}}(\mathbb{Z}) \simeq K^{j}_{\mathrm{top}}(\ast )^{\oplus \mathbb{Z}}\) between the algebraic and the topological \(K\)-theory [12, Theorem 5]. Another way of achieving the same result is to consider the Pontryagin duality \(\mathbb{S}^{1}=\widehat{\mathbb{Z}}\) and the isomorphism \(\mathcal{C}_{0}(\mathbb{Z})\simeq C^{*}_{r}(\mathbb{S}^{1})\) where \(C^{*}_{r}(\mathbb{S}^{1})\) is the (reduced) group algebra of the circle [15, Proposition VII.1.1]. Therefore, one has that \(K_{0}(C^{*}_{r}(\mathbb{S}^{1}))\simeq {\mathrm{Rep}}(\mathbb{S}^{1}) \simeq \mathbb{Z}^{\oplus \mathbb{Z}}\) and \(K_{0}(C^{*}_{r}(\mathbb{S}^{1}))\simeq 0\) where \(\mathrm{Rep}(\mathbb{S}^{1})\) denotes the complex representation ring of \(\mathbb{S}^{1}\) [12, Sect. 7]. The generators of \(K_{j}(\mathcal{C}_{0}(\mathbb{Z}))\) are the classes \([\pi _{i}]\), \(i\in \mathbb{Z}\), of the projections \(\pi _{i}(n):=\delta _{i,n}\). After putting all the information together, we can describe the \(K\)-theory of the Iwatsuka magnetic hull as

$$ K_{0}\big(\mathcal{C}(\Omega _{I})\big)\;\simeq \;\bigoplus _{i\in \mathbb{Z}}\mathbb{Z}[\pi _{i}]\;\oplus \;\mathbb{Z}[\pi _{-}]\; \oplus \;\mathbb{Z}[\pi _{+}]\;,\qquad K_{1}\big(\mathcal{C}(\Omega _{I}) \big)\;=\;0\;, $$

where \(\pi _{-}:=\jmath ((1,0))\) and \(\pi _{+}:=\jmath ((0,1))-\pi _{0}\) are the projections at infinity.

Appendix C: The Pimsner-Voiculescu Exact Sequence

In this section we will provide a brief overview on the Pimsner-Voiculescu six-term exact sequence which is the main tool to compute the \(K\)-theory for crossed product \(C^{*}\)-algebras by ℤ. For the interested reader we refer to the original work [51] and the monograph [9, Chapter V].

Let \(\mathcal{Y}\) be a \(C^{*}\)-algebra, \(\alpha \in {\mathrm{Aut}}(\mathcal{Y})\) and automorphism and \(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z}\) the crossed product generated by \(\mathcal{Y}\) and the unitary \(u\) with the relation

$$ \alpha (a)\;=\:uau^{*}\;,\qquad \forall \; a\in \mathcal{Y}\;. $$

The first step of the construction is to define an appropriate short exact sequence of \(C^{*}\)-algebras. This is done by considering the tensor product \(\mathcal{Y}\otimes \mathcal{K}\), where \(\mathcal{K}\) denotes the \(C^{*}\)-algebra of compact operators, and the \(C^{*}\)-algebra \(\mathcal{T}_{\alpha }\) generated in \(\mathcal{Y}\otimes {C^{*}}(v)\) by \(\mathcal{Y}\otimes {\mathbf{1}}\) and \(V=u\otimes v\), with \(v\) a non-unitary (abstract) isometry. It is useful to think at elements of \(\mathcal{K}\) as infinite matrices acting on \(\ell ^{2}(\mathbb{N}_{0})\) with respect its canonical basis. Let us consider the map \(\varphi :\mathcal{Y}\otimes \mathcal{K}\to \mathcal{T}_{\alpha }\) defined by

$$ \varphi (a\otimes e_{j,k})\;:=\;V^{j}(a\otimes (\mathbf{1}-vv^{*}))(V^{*})^{k} \;=\;(\alpha ^{j}(a)\otimes {\mathbf{1}})V^{j}P(V^{*})^{k} $$

where \(P\) is the (non-trivial) self-adjoint projection given by \(P:=\mathbf{1}-VV^{*}=\mathbf{1}\otimes (\mathbf{1}-vv^{*})\) and \(e_{j,k}\) are the rank one operators which generates \(\mathcal{K}\). Then, there exists a short exact sequence of \(C^{*}\)-algebras

$$ 0\;\longrightarrow \; \mathcal{Y}\otimes \mathcal{K} \; \stackrel{\varphi }{\longrightarrow }\; \mathcal{T}_{\alpha } \; \stackrel{\psi }{\longrightarrow }\; \mathcal{Y}\rtimes _{\alpha } \mathbb{Z}\;\longrightarrow \; 0, $$
(C.1)

where the map \(\psi :\mathcal{T}_{\alpha }\to \mathcal{Y}\rtimes _{\alpha }\mathbb{Z}\) defined by

$$ \psi (a\otimes {\mathbf{1}})\;:=\;a\;,\quad \psi (V)\;:=\;u\;. $$

For this reason \(\mathcal{T}_{\alpha }\) is called the Toeplitz extension of the stabilized algebra \(\mathcal{Y}\otimes \mathcal{K}\) by the crossed product \(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z}\).

The Pimsner-Voiculescu (six-term) exact sequence is a cyclic sequence which connects the \(K\)-theory of \(\mathcal{Y}\) and \(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z}\), and is given by

$$ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} K_{0}(\mathcal{Y})&\stackrel{\beta _{\ast }}{\longrightarrow } &K_{0}( \mathcal{Y}) & \stackrel{{\imath }_{*}}{\longrightarrow } &K_{0}( \mathcal{Y}\rtimes _{\alpha }\mathbb{Z}) \\ &&&&\\ {\partial _{1}}\Big\uparrow &&&&\Big\downarrow {\partial _{0}} \\ &&&&\\ K_{1}(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z})& \underset{{\imath }_{*}}{\longleftarrow } &K_{1}(\mathcal{Y}) & \underset{\beta _{\ast }}{\longleftarrow } &K_{1}(\mathcal{Y}) \\ \end{array} $$
(C.2)

and it is worth pointing out that this is not exactly the standard six-term exact sequence associated with the short exact sequence (C.1), although it is closely related. The maps \({\imath }_{*}\) are induced by the canonical inclusion \(\imath :\mathcal{Y}\hookrightarrow \mathcal{Y}\rtimes _{\alpha } \mathbb{Z}\) and the maps \(\beta _{\ast }\) are induced by the map \(\beta :\mathcal{Y}\to \mathcal{Y}\) defined as \(\beta :=\mathrm{Id}-\alpha ^{-1}\). The vertical maps are related with the index and the exponential maps for the standard six-term exact sequence in \(K\)-theory emerging from the short exact sequence (C.1) (cf. [63, Theorem 9.3.2]). More precisely one has that \(\partial _{0}:=\kappa _{0}^{-1}\circ {\mathrm{ind}}\) and \(\partial _{1}:=\kappa _{0}^{-1}\circ {\mathrm{exp}}\) where \(\mathrm{ind}:K_{1}(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z})\to K_{0}( \mathcal{Y}\otimes \mathcal{K})\) and \(\mathrm{exp}:K_{0}(\mathcal{Y}\rtimes _{\alpha }\mathbb{Z})\to K_{1}( \mathcal{Y}\otimes \mathcal{K})\) are the usual index and the exponential maps related to the short exact sequence (C.1) and \(\kappa _{0}: K_{j}(\mathcal{Y})\to K_{j}(\mathcal{Y}\otimes \mathcal{K})\), with \(j=0,1\), is the stabilization isomorphism induced by \(a\mapsto a\otimes e_{0,0}\) for every \(a\in \mathcal{Y}\).

Appendix D: \(K\)-Theory for a Constant Magnetic Field

In this section the \(K\)-theory of the magnetic \(C^{*}\)-algebra \(\mathcal{A}_{b}\) associated with a constant field of strength \(b\) will be described. The key observation is that \(\mathcal{A}_{b}\) is a faithful representation of the noncommutative torus \(\mathbb{A}_{\theta _{b}}\) provided that \(\theta _{b}:=b(2\pi )^{-1}\). Let us observe that \(b\) enters in the definition of \(\mathbb{A}_{\theta _{b}}\) only modulo \(2\pi \). For this reason, without loss of generality, we can assume \(0< \theta _{b} <1\) as the condition for a non trivial magnetic field. The \(K\)-theory of the noncommutative torus \(\mathbb{A}_{\theta _{b}}\) has been investigated in [5052] and is described in several textbooks like [63, Sect. 12.3] or [22, Chap. 12]. As a consequence of the isomorphism \(\mathcal{A}_{b}\simeq \mathbb{A}_{\theta _{b}}\) we get

$$ \begin{aligned} K_{0}(\mathcal{A}_{b})\;&=\;\mathbb{Z}[{\mathbf{1}}]\;\oplus \;\mathbb{Z}[ \mathfrak{p}_{\theta _{b}}]\;\simeq \;\mathbb{Z}^{2} \;, \\ K_{1}(\mathcal{A}_{b})\;&=\;\mathbb{Z}[\mathfrak{s}_{b,1}]\;\oplus \;\mathbb{Z}[\mathfrak{s}_{b,2}]\;\simeq \;\mathbb{Z}^{2}\;. \end{aligned} $$
(D.1)

The generators of the \(K\)-theory of \(\mathcal{A}_{b}\) are quite explicit except for the projection \(\mathfrak{p}_{\theta _{b}}\in \mathcal{A}_{b}\) which is known as Powers-Rieffel projection. Our next task is to provide a presentation of \(\mathfrak{p}_{\theta _{b}}\) optimized for the aims of this work. We will set

$$ \mathfrak{p}_{\theta _{b}}\;:=\mathfrak{s}_{b,1}^{*}\;\mathfrak{d}_{1} \;+\;\mathfrak{d}_{0}\;+\;\mathfrak{d}_{1}\;\mathfrak{s}_{b,1} $$

where \(\mathfrak{d}_{1}:=g(\mathfrak{s}_{2})\) and \(\mathfrak{d}_{0}:=f(\mathfrak{s}_{2})\) are suitable self-adjoint elements of \(C^{*}(\mathfrak{s}_{2})\subset \mathcal{A}_{b}\). Here we are using the coincidence \(\mathfrak{s}_{2}=\mathfrak{s}_{b,2}\) between the ordinary shift and magnetic translation in view of the election of the Landau gauge for the constant magnetic field. The requirement for \(\mathfrak{p}_{\theta _{b}}\) of being a projection is automatically satisfied it the following relations hold true:

$$ \begin{aligned} (\mathfrak{s}_{b,1}^{*}\mathfrak{d}_{1}\mathfrak{s}_{b,1}) \mathfrak{d}_{1}\;&=\;0\;, \\ \mathfrak{d}_{1}(\mathfrak{d}_{0}+\mathfrak{s}_{b,1}\mathfrak{d}_{0} \mathfrak{s}_{b,1}^{*})\;&=\;\mathfrak{d}_{1}\;, \\ \mathfrak{d}_{0}^{2}+\mathfrak{d}_{1}^{2}+(\mathfrak{s}_{b,1}^{*} \mathfrak{d}_{1}\mathfrak{s}_{b,1})^{2}\;&=\;\mathfrak{d}_{0}\;. \end{aligned} $$
(D.2)

The way of implementing these relation is by the isomorphism (induced by the Fourier transform) \(C^{*}(\mathfrak{s}_{2})\simeq C_{\mathrm{per}}([0,1])\) where on the right-hand side one has the \(C^{*}\)-algebra of continuous function on \([0,1]\) with periodic boundary conditions, i.e. \(f(0)=f(1)\). Under this isomorphism \(\mathfrak{s}_{2}\mapsto e\) where \(e(k):=\,\mathrm{e}^{\,\mathrm{i}\,2\pi k}\) and \(\mathfrak{s}_{b,1}\mathfrak{s}_{2}\mathfrak{s}_{b,1}^{*}=\, \mathrm{e}^{\,\mathrm{i}\,b}\, \mathfrak{s}_{2}\mapsto e(\cdot + \theta _{b})\) Consider a \(0<\delta <\theta _{b}\) such that \(\theta _{b}+\delta <1\) and the function \(f\) such that

$$ f(e(k))\;:=\;\frac{k}{\delta }\chi _{[0,\delta ]}(k)+\chi _{(\delta , \theta _{b})}(k)+\left (1+\frac{\theta _{b}-k}{\delta }\right )\chi _{[ \theta _{b},\theta _{b}+\delta ]}(k)\;. $$

Define

$$ g(e(k))\;:=\;\sqrt{f(e(k))(1-f(e(k)))}\;\chi _{[0,\delta ]}(k)\;=\; \sqrt{\frac{k}{\delta }\left (1-\frac{k}{\delta }\right )}\;\chi _{[0, \delta ]}(k)\;. $$

One can check that by using \(f\) and \(g\) above to define \(\mathfrak{d}_{0}\) and \(\mathfrak{d}_{1}\) respectively, then the conditions (D.2) are automatically verified. The crucial identities are \(\mathfrak{s}_{b,1}^{*}\mathfrak{d}_{1}\mathfrak{s}_{b,1}\mapsto g(e( \cdot -\theta _{b}))\) (which is supported in \([\theta _{b},\theta _{b}+\delta ]\)) and \(\mathfrak{s}_{b,1}\mathfrak{d}_{0}\mathfrak{s}_{b,1}^{*}\mapsto f(e( \cdot +\theta _{b}))\) (which must be defined periodically on \([0,1]\)). Let us point out that with a standard ‘‘smoothing argument’’ it is possible to replace the continuous function \(f\) and \(g\) with smooth functions. This implies that it is possible to define the Powers-Rieffel projection inside the smooth algebra \(\mathcal{A}_{b}^{\infty }\).

The relations (D.2) provide other useful identities. Let \(\mathfrak{L}:=\mathfrak{L}(\mathfrak{d}_{1})\) be the support projection of \(\mathfrak{d}_{1}\) (in the von Neumann algebra generated by \(\mathcal{A}_{b}\)). This is by definition the smallest projection such that \(\mathfrak{L}\mathfrak{d}_{1}=\mathfrak{d}_{1}=\mathfrak{d}_{1} \mathfrak{L}\). It is immediate to conclude that \(\mathfrak{L}\) is mapped into the characteristic function on the support of \(g\circ e\) under the isomorphism used above, i.e. \(\mathfrak{L}\mapsto \chi _{[0, \delta ]}\). Combining \(\mathfrak{L}\) with the first relation in (D.2) one gets \((\mathfrak{s}_{b,1}^{*}\mathfrak{d}_{1}\mathfrak{s}_{b,1}) \mathfrak{L}=0\). This relation combined with the third equation in (D.2) provides

$$ \mathfrak{d}_{1}^{2}\;=\;\mathfrak{L}(\mathfrak{d}_{0}- \mathfrak{d}_{0}^{2})\;=\;(\mathfrak{d}_{0}-\mathfrak{d}_{0}^{2}) \mathfrak{L}\;. $$
(D.3)

For the next result we need to recall that two unitary operators \(\mathfrak{u}_{0},\mathfrak{u}_{1}\in \mathcal{A}_{b}\) are said to be homotopic equivalent, denoted \(\mathfrak{u}_{0}\sim \mathfrak{u}_{1}\), if there is a continuous map \([0,1]\ni t\mapsto \mathfrak{u}(t)\in \mathcal{A}_{b}\) such that \(\mathfrak{u}(0)=\mathfrak{u}_{0}\), \(\mathfrak{u}(1)=\mathfrak{u}_{1}\) and \(\mathfrak{u}(t)\) is unitary for every \(t\in [0,1]\).

Lemma D.1

The unitary operators \(\mathrm{e}^{-\,\mathrm{i}\,2\pi \mathfrak{d}_{0}\mathfrak{L}}\) and \(\mathfrak{s}_{b,2}^{*}\) are homotopic equivalent in \(\mathcal{A}_{b}\), i.e. \(\mathrm{e}^{-\,\mathrm{i}\,2 \pi \mathfrak{d}_{0}\mathfrak{L}}\,\sim \mathfrak{s}_{b,2}^{*}\).

Proof

In view of the isomorphism \(C^{*}(\mathfrak{s}_{2})\simeq C_{\mathrm{per}}([0,1])\) it is enough to find an homotopy between the functions \(t(k):=\,\mathrm{e}^{-\,\mathrm{i}\,2\pi \frac{k}{\delta }\chi _{[0, \delta ]}(k)}\ \mbox{and}\ e(k)^{-1}:=\,\mathrm{e}^{-\,\mathrm{i}\,2\pi k}\). Such an homotopy is explicitly given by

$$ [0,1]\ni t\;\longmapsto \;{u}_{t}(k)\;:=\quad \mathrm{e}^{-\, \mathrm{i}\,2\pi \frac{k}{\delta +t(1-\delta )}\chi _{[0,\delta +t(1- \delta )]}(k)} $$

and this completes the proof. □

Let \(\mathfrak{L}'\) be the support projection of the shifted operator \(\mathfrak{s}_{b,1}^{*}\mathfrak{d}_{1}\mathfrak{s}_{b,1}\). It turns out that \(\mathfrak{L}'\) is isomorphically mapped into the characteristic function \(\chi _{[\theta _{b},\theta _{b}+\delta ]}\).

Lemma D.2

The unitary operators \(\mathrm{e}^{-\,\mathrm{i}\,2\pi \mathfrak{d}_{0}\mathfrak{L}'}\) and \(\mathfrak{s}_{b,2}\) are homotopic equivalent in \(\mathcal{A}_{b}\), i.e. \(\mathrm{e}^{-\,\mathrm{i}\,2 \pi \mathfrak{d}_{0}\mathfrak{L}'}\,\sim \mathfrak{s}_{b,2}\).

Proof

As above it is enough to find an homotopy between the functions \(t'(k):= \mathrm{e}^{-\,\mathrm{i}\,2\pi \left (1+ \frac{\theta _{b}-k}{\delta }\right )\chi _{[\theta _{b},\theta _{b}+ \delta ]}(k)}\) and \(e(k):=\,\mathrm{e}^{\,\mathrm{i}\,2\pi k}\). Such an homotopy is explicitly given by

$$ [0,1]\ni t\;\longmapsto \;{u}'_{t}(k)\;:=\quad \mathrm{e}^{-\, \mathrm{i}\,2\pi \left ( \frac{(1-t)(\theta _{b}-k+\delta -1)-t\delta k}{\delta } \right ) \chi _{[(1-t)\theta _{b},(1-t)(\theta _{b}+\delta -1)+1]}(k)} $$

and this completes the proof. □

Let us end this appendix with a more precise description of the \(K_{0}\)-group of \(\mathcal{A}_{b}\). Let \([\mathfrak{p}]\in K_{0}(\mathcal{A}_{b})\). Then, from the first equation of (D.1) one infers the existence of \(M,N\in \mathbb{Z}\) such that

$$ [\mathfrak{p}]\;\simeq \;M\;[{\mathbf{1}}]\;+\;N\;[\mathfrak{p}_{\theta _{b}}] \;. $$

The number \(N\) can be deduced by using the pairing (3.15) along with \(\prec [{\mathbf{1}}],[\xi _{b}]\succ =0\) and \(\prec [\mathfrak{p}_{\theta _{b}}],[\xi _{b}]\succ =1\). This implies that \(N=\mathrm{Ch}_{b}(\mathfrak{p})\). The number \(M\) can be deduced from the pairing \(\tau :K_{0}(\mathcal{A}_{b})\to \mathbb{Z}+\theta _{b} \mathbb{Z}\) induced by the trace, i.e. \(\tau ([\mathfrak{p}]):=\mathscr{T}( \mathfrak{p})\). Since \(\tau ([{\mathbf{1}}])=1\) and \(\tau ([\mathfrak{p}_{\theta _{b}}])=\theta _{b}\) one gets that \(M=\mathscr{T}(\mathfrak{p})-N\theta _{b}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Nittis, G., Gutiérrez, E. Quantization of Edge Currents Along Magnetic Interfaces: A \(K\)-Theory Approach. Acta Appl Math 175, 6 (2021). https://doi.org/10.1007/s10440-021-00428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00428-z

Keywords

Mathematics Subject Classification (2010)

Navigation