Skip to main content
Log in

Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study a model of three interacting species in a food chain composed by a prey, an specific predator and a generalist predator. The capture of the prey by the specific predator is modelled as a modified Holling-type II non-differentiable functional response. The other predatory interactions are both modelled as Holling-type I. Moreover, our model follows a Leslie-Gower approach, in which the function that models the growth of each predator is of logistic type, and the corresponding carrying capacities depend on the sizes of their associated available preys. The resulting model has the form of a set of nonlinear ordinary differential equations which includes a non-differentiable term. By means of topological equivalences and suitable changes of parameters, we find that there exists an Allee threshold for the survival of the prey population in the food chain, given, effectively, as a critical level for the generalist predator. The dynamics of the model is studied with analytical and computational tools for bifurcation theory. We present two-parameter bifurcation diagrams that contain both local phenomena (Hopf, saddle-node transcritical, cusp, Bogdanov-Takens bifurcations) and global events (homoclinic and heteroclinic connections). In particular, we find that two types of heteroclinic cycles can be formed, both of them containing connections to the origin. One of these cycles is planar involving the absence of the specific predator. In turn, the other heteroclinic cycle is formed by connections in the full three-dimensional phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguirre, P.: A general class of predation models with multiplicative Allee effect. Nonlinear Dyn. 78, 629–648 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aguirre, P.: Bifurcations of two-dimensional global invariant manifolds near a non-central saddle-node homoclinic orbit. SIAM J. Appl. Dyn. Syst. 12, 1600–1644 (2015)

    Article  Google Scholar 

  3. Aguirre, P., González-Olivares, E., Sáez, E.: Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect. SIAM J. Appl. Math. 69, 1244–1262 (2009)

    Article  MathSciNet  Google Scholar 

  4. Aguirre, P., Krauskopf, B., Osinga, H.M.: Global invariant manifolds near homoclinic orbits to a real saddle: (non)orientability and flip bifurcation. SIAM J. Appl. Dyn. Syst. 12, 1803–1846 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bazykin, A.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  6. Chiu, C.H., Hsu, S.B.: Extinction of top-predator in a three-level food-chain model. J. Math. Biol. 37, 372–380 (1998)

    Article  MathSciNet  Google Scholar 

  7. Clark, C.K.: Mathematical Bioeconomic: The Optimal Management of Renewable Resources, 2nd edn. Wiley, New York (1990)

    MATH  Google Scholar 

  8. Deng, B.: Food chain chaos due to Shilnikov orbit. Chaos 12, 533–538 (2002)

    Article  MathSciNet  Google Scholar 

  9. Deng, B.: Equilibriumizing all food chain through reproductive efficiency. Chaos 16, 043125 (2006)

    Article  MathSciNet  Google Scholar 

  10. Doedel, E.: Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems, pp. 1–49. Springer, New York (2007), Underst. Complex Syst., Chap. 1

    Google Scholar 

  11. Doedel, E.J., Oldeman with major contributions from, B.E., Champneys, A.R., Derole, F., Fairgrieve, T.F., Kuznetsov, Y., Paffenroth, R.C., Sandstede, B., Wang, X.J., Zhang, C.H.: AUTO-07p Version 0.7: Continuation and Bifurcation Software for Ordinary Differential Equations. Department of Computer Science, Concordia University, Montreal, Canada (2010), available from http://cmvl.cs.concordia.ca/

    Google Scholar 

  12. Dumortier, F., Roussarie, R., Sotomayor, J., Zoladek, H.: Bifurcations of Planar Vector Fields. Lecture Notes in Mathematics, vol. 1480. Springer, Berlin (1991)

    Book  Google Scholar 

  13. González-Olivares, E., Rojas-Palma, A.: Allee effect in Gause type predator-prey models: existence of multiple attractors, limit cycles and separatrix curves. A brief review. Math. Model. Nat. Phenom. 8, 143–164 (2013)

    Article  MathSciNet  Google Scholar 

  14. González-Olivares, E., Sáez, E., Stange, E., Szántó, I.: Topological description of a non-differentiable bioeconomics model. Rocky Mt. J. Math. 35(4), 1133–1155 (2005)

    Article  MathSciNet  Google Scholar 

  15. González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., Flores, J.D.: Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey. Appl. Math. Model. 35(1), 366–381 (2011)

    Article  MathSciNet  Google Scholar 

  16. González-Olivares, E., González-Yánez, B., Mena-Lorca, J., Flores, J.D.: Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Math. Biosci. Eng. 10, 345–367 (2013)

    Article  MathSciNet  Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  18. Hannesson, R.: In: Bioeconomic Analysis of Fisheries. Fishing, New Books (1993)

    Google Scholar 

  19. Haque, M., Ali, N., Chakravarty, S.: Study of a tri-trophic prey-dependent food chain model of interacting populations. Math. Biosci. 246(1), 55–71 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hasík, K.: On a predator-prey system of Gause type. J. Math. Biol. 60, 59–74 (2010)

    Article  MathSciNet  Google Scholar 

  21. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  22. Khoshsiar-Ghaziani, R., Alidoustia, J., Bayati-Eshkaftaki, A.: Stability and dynamics of a fractional order Leslie-Gower prey-predator model. Appl. Math. Model. 40, 2075–2086 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. Springer, Berlin (2004)

    Book  Google Scholar 

  24. Kuznetsov, Yu.A., De Feo, O., Rinaldi, S.: Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM J. Appl. Math. 62, 462–487 (2001)

    Article  MathSciNet  Google Scholar 

  25. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  26. Mccann, K., Yodzis, P.: Bifurcation structure of a three-species food-chain model. Theor. Popul. Biol. 48, 93–125 (1995)

    Article  Google Scholar 

  27. Mukherjee, D.: The effect of prey refuges on a three species food chain model. Differ. Equ. Dyn. Syst. 22(4), 413–426 (2014)

    Article  MathSciNet  Google Scholar 

  28. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  29. Sáez, E., Szántó, I.: A polycycle and limit cycles in a non-differentiable predator-prey model. Proc. Indian Acad. Sci. Math. Sci. 117(1), 219–231 (2007)

    Article  MathSciNet  Google Scholar 

  30. Sáez, E., Stange, E., Szántó, I., González-Olivares, E., Falconi, M.: Chaotic dynamics and coexistence in a three species interaction model. Int. J. Biomath. 08, 1550022 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sahoo, B., Poria, S.: Oscillatory coexistence of species in a food chain model with general Holling interactions. Differ. Equ. Dyn. Syst. 22(3), 221–238 (2014)

    Article  MathSciNet  Google Scholar 

  32. Saputra, K.V.I., van Veen, L., Quispel, G.: The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete Contin. Dyn. Syst., Ser. B 14(1), 233–250 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Sharma, S., Samanta, G.P.: Dynamical behaviour of a two prey and one predator system. Differ. Equ. Dyn. Syst. 22(2), 125–145 (2014)

    Article  MathSciNet  Google Scholar 

  34. Singh, A., Gakkhar, S.: Stabilization of modified Leslie-Gower prey-predator model. Differ. Equ. Dyn. Syst. 22(3), 239–249 (2014)

    Article  MathSciNet  Google Scholar 

  35. Turchin, P.: In: Complex Population Dynamics, A Theorical/Empirical Sythesis. Monograps in Populations Biology, vol. 35, pp. 89–118 (2003)

    Google Scholar 

  36. Walters, C.J.: Adaptive Management of Renewable Fisheries. Macmillan Co., London (1986)

    Google Scholar 

Download references

Acknowledgements

We thank professor Eduardo González-Olivares for suggesting the study of non-differentiable predation models and for his invaluable comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Aguirre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V.R. was funded by PIIC DGIIP-UTFSM. P.A. was partially funded by CONICYT-FONDECYT Iniciación grant 11150306 and Proyecto Basal CMM-U. de Chile

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, V., Aguirre, P. Study of a Tritrophic Food Chain Model with Non-differentiable Functional Response. Acta Appl Math 165, 19–43 (2020). https://doi.org/10.1007/s10440-019-00239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00239-3

Keywords

Mathematics Subject Classification

Navigation