Skip to main content
Log in

Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper deals with the regularity of weak solutions to the 3D magneto-micropolar fluid equations in Besov spaces. It is shown that for \(0\le\alpha\le1\) if \(u\in L^{\frac{2}{1+\alpha}}(0,T; \dot{B}_{\infty,\infty}^{\alpha})\), then the weak solution \((u,\omega ,b)\) is regular on \((0,T]\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Danchin, R., Chemin, J.Y.: Fourier Analysis and Nonlinear Partial Differential Equations. Series of Comprehensive Studies in Mathematics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  2. Benbernou, S., Ragusa, M.A., Terbeche, M.: A logarithmically improved regularity criterion for the MHD equations in terms of one directional derivative of the pressure. Appl. Anal. 12, 2140–2148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfstrom, J.: Interpolation Spaces, an Introduction. Springer, New York (1976)

    Book  MATH  Google Scholar 

  4. Caflish, R.E., Klapper, I., Steel, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

    Article  MathSciNet  Google Scholar 

  5. Cao, C.S., Wu, J.H.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Q.L., Miao, C.X.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Q.L., Miao, C.X., Zhang, Z.F.: The Beal-Kato-Majda criterion for the 3D magnetohydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007)

    Article  MATH  Google Scholar 

  8. Dong, B.Q., Chen, Z.M.: Regularity criteria of weak solutions to the three-dimensional micropolar flows. J. Math. Phys. 50, 1–13 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dong, B.Q., Zhang, W.: On the regularity criterion for the three-dimensional micropolar flows in Besov spaces. Nonlinear Anal. 73, 2334–2341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duvant, G., Lions, J.L.: Inequations en thermoelasticite et magnetohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MATH  Google Scholar 

  11. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  12. Fan, J.S., Li, F.C., Nakamura, F., Tan, G.: Regularity criteria for the three-dimensional magnetohydrodynamic equations. J. Differ. Equ. 256, 2858–2875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gala, S.: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space. Nonlinear Differ. Equ. Appl. 17, 181–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gala, S.: On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space. Nonlinear Anal. 12, 2142–2150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gala, S., Liu, Q., Ragusa, M.A.: Logarithmically improved regularity criterion for the nematic liquid crystal flows in \(\dot{B}_{\infty,\infty}^{-1}\) space. Comput. Math. Appl. 11, 1738–1745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gala, S., Guo, Z., Ragusa, M.A.: A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 27, 70–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galdi, G., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15, 105–108 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, C., Xin, Z.P.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Fluids. Gorden & Breach, New York (1969)

    MATH  Google Scholar 

  23. Lei, Z., Zhou, Y.: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Arch. Ration. Mech. Anal. 188, 579–583 (2008)

    Article  Google Scholar 

  24. Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC, New York (2002)

    Book  MATH  Google Scholar 

  25. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  26. Lukaszewicz, G.: On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids. Rend. Accad. Naz. Sci. Detta Accad. XL, Mem. Mat. Ser. V 13, 105–120 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Lukaszewicz, G.: Micropolar Fluids. Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  28. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  29. Ortega-Torres, E.E., Rojas-Medar, M.A.: Magneto-micropolar fluid motion: Global existence of strong solutions. Abstr. Appl. Anal. 4, 109–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ortega-Torres, E., Rojas-Medar, M.: On the regularity for solutions of the micropolar fluid equations. Rend. Semin. Mat. Univ. Padova 122, 27–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rojas-Medar, M.A.: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188, 301–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rojas-Medar, M.A., Boldrini, J.L.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11, 443–460 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rojas-Medar, M.A., Boldrini, J.L.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Math. Complut. 11, 443–460 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  36. Triebel, H.: Theory of Function Spaces. Monographs in mathematics. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  37. Wang, Y.X.: Blow-up criteria of smooth solutions to the three-dimensional magnetomicropolar fluid equations. Bound. Value Probl. 1, 1 (2015)

    Article  Google Scholar 

  38. Wang, Y.X., Zhao, H.J.: Logarithmically improved blow up criterion for smooths solution to the 3D micropolar fluid equations. J. Appl. Math. 10, 1–13 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Y.Z., Wang, S.B., Wang, Y.X.: Regularity criteria for weak solution to the 3D magnetohydrodynamic equations. Acta Math. Sci. 32, 1063–1072 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, F.Y.: Regularity criterion of weak solution for the 3D magneto-micropolar fluid equations in Besov spaces. Commun. Nonlinear Sci. Numer. Simul. 17, 2426–2433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, X.J., Ye, Z., Zhang, Z.J.: Remark on an improved regularity criterion for the 3D MHD equations. Appl. Math. Lett. 42, 41–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain. Methods Appl. Sci. 28, 1507–1526 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yuan, B.Q.: On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space. Proc. Am. Math. Soc. 138, 2010–2025 (2010)

    Article  MathSciNet  Google Scholar 

  44. Yuan, B.Q.: Regularity of weak solutions to magneto-micropolar equations. Acta Math. Sci. 30, 1469–1480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Z.J., Yao, Z.A., Wang, X.F.: A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces. Nonlinear Anal. 74, 2220–2225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zheng, X.X.: A regularity criterion for the tridimensional Navier-Stokes equations in the term of one velocity component. J. Differ. Equ. 256, 283–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, Y.: Remarks on regularities for the MHD equations. Discrete Contin. Dyn. Syst. 12, 881–886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of B Yuan was partially supported by the National Natural Science Foundation of China (No. 11471103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Yuan.

Appendix

Appendix

Theorems 1.4 and 1.6 were proved in [44] and [37], we give their proof here for completeness.

Proof of Theorem 1.4

We derive the following estimate by differentiating (3.1) and multiplying \(\partial_{x_{i}} u\), \(\partial_{x_{i}} \omega \), \(\partial_{x_{i}} b\), respectively,

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\partial_{x_{i}} u\|_{2}^{2}+ \|\partial_{x_{i}} \omega\|_{2}^{2}+\|\partial_{x_{i}} b\|_{2}^{2}\bigr)+ \sum_{j=1}^{3}(\mu+\chi)\bigl\| \partial_{x_{i}x_{j}}^{2} u\bigr\| _{2}^{2}+\sum_{j=1}^{3}\gamma\bigl\| \partial_{x_{i}x_{j}}^{2} \omega \bigr\| _{2}^{2} \\ &\qquad{}+\sum_{j=1}^{3}\nu\bigl\| \partial_{x_{i}x_{j}}^{2} b\bigr\| _{2}^{2} +\sum_{j=1}^{3}\kappa\|\operatorname{div}\partial_{x_{i}}\omega\|_{2}^{2}+\sum_{j=1}^{3}2\chi\|\partial_{x_{i}} \omega\|_{2}^{2} \\ &\quad\le\bigl|(\partial_{x_{i}} u\cdot\nabla u,\partial_{x_{i}}u)\bigr|+ \bigl|(\partial_{x_{i}} b\cdot\nabla b,\partial_{x_{i}} u)\bigr|+ \bigl|(\partial_{x_{i}} u\cdot\nabla b,\partial_{x_{i}} b)\bigr| \\ &\qquad{}+\bigl|(\partial_{x_{i}} b\cdot\nabla u,\partial_{x_{i}} b)\bigr|+ \bigl|(\partial_{x_{i}} u\cdot\nabla \omega,\partial_{x_{i}} \omega)\bigr|+ 2\chi\bigl|\bigl(\nabla\times\omega,\partial_{x_{i}x_{j}}^{2} u\bigr)\bigr| \\ &\quad\triangleq I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}. \end{aligned}$$
(A.1)

We use the Littlewood-Paley decomposition to decompose \(u\)

$$\begin{aligned} u=\sum_{j\in\mathbb{Z}}\Delta_{j}u= \sum_{j< -N}\Delta_{j}u+\sum_{|j|\le N}\Delta_{j}u+ \sum_{j>N}\Delta_{j}u, \end{aligned}$$
(A.2)

where \(N \)is a positive integer that will be determined later. Inserting (A.2) into \(I _{1}\) one has

$$\begin{aligned} I_{1}&= \sum_{j< -N}\int_{\mathbb{R}^{3}}\partial_{x_{i}} u\cdot\nabla u\Delta_{j} \partial_{x_{i}}u\mathrm{d}x +\sum_{|j|\le N}\int_{\mathbb{R}^{3}}\partial_{x_{i}} u\cdot\nabla u\Delta_{j}\partial_{x_{i}}u\mathrm{d}x \\ &\qquad{} + \sum_{j>N}\int_{\mathbb{R}^{3}}\partial_{x_{i}} u\cdot\nabla u\Delta_{j}\partial_{x_{i}}u\mathrm{d}x \\ &\quad=I_{11}+I_{12}+I_{13}. \end{aligned}$$
(A.3)

By virtue of the Hölder inequality and Bernstein inequality we obtain that

$$\begin{gathered} |I_{11}|\le\|\nabla u\|_{2}^{2}\sum_{j< -N}\|\Delta_{j}\partial_{x_{i}}u\|_{\infty}\le C2^{-\frac{3}{2}N}\|\nabla u\|_{2}^{3}, \end{gathered}$$
(A.4)
$$\begin{gathered} |I_{12}|\le\|\nabla u\|_{2}^{2}\sum_{|j|\le N}\|\Delta_{j}\nabla u\|_{\infty}\le 3N\|\nabla u\|_{2}^{2}\|\nabla u\|_{\dot{B}_{\infty,\infty}^{0}}\le 3N\|\nabla u\|_{2}^{2}\|\nabla u\|_{\dot{B}_{\infty,\infty}^{1}}. \end{gathered}$$
(A.5)

For \(I_{13}\), by the Gagliardo-Nirenberg inequality, one also has

$$\begin{aligned} |I_{13}|\le\sum_{j>n}2^{j}\|\Delta_{j}\nabla u\|_{2}2^{-\frac{j}{2}}\|\nabla u\|_{3}^{2}\le 2^{-\frac{N}{2}}\|\nabla u\|_{2}\bigl\| D^{2} u\bigr\| _{2}^{2}. \end{aligned}$$
(A.6)

Summing up estimates (A.4)–(A.6), it follows

$$\begin{aligned} |I_{1}|\le C2^{-\frac{3}{2}N}\|\nabla u\|_{2}^{3}+3N\|\nabla u\|_{2}^{2}\|\nabla u\|_{\dot{B}_{\infty,\infty}^{0}}+ 2^{-\frac{N}{2}}\|\nabla u\|_{2}\bigl\| D^{2} u\bigr\| _{2}^{2}. \end{aligned}$$
(A.7)

Similar to the estimate of \(I _{1}\), the term \(I _{2},\ldots ,I _{5}\) can be bounded as

$$\begin{gathered} \begin{aligned}[b] |I _{2}|,\ldots,|I _{4}|&\le C2^{-\frac{3}{2}N}\bigl(\|\nabla b\|_{3}^{2}+\|\nabla u\|_{3}^{2}\bigr)+ CN\|\nabla b\|_{2}^{2}\| u\|_{\dot{B}_{\infty,\infty}^{1}}\\ &\quad{}+C2^{-\frac{N}{2}}\|\nabla b\|_{2} \bigl(\bigl\| D^{2} u\bigr\| _{2}^{2}+\bigl\| D^{2}b\bigr\| _{2}^{2}\bigr), \end{aligned} \end{gathered}$$
(A.8)
$$\begin{gathered} \begin{aligned}[b] |I_{5}|&\le C2^{-\frac{3}{2}N}\bigl(\|\nabla \omega\|_{3}^{2}+\|\nabla u\|_{3}^{2}\bigr)+ CN\|\nabla \omega\|_{2}^{2}\|u\|_{\dot{B}_{\infty,\infty}^{1}}\\ &\quad{}+ C2^{-\frac{N}{2}}\|\nabla \omega\|_{2} \bigl(\bigl\| D^{2} u\bigr\| _{2}^{2}+\bigl\| D^{2}\omega\bigr\| _{2}^{2}\bigr). \end{aligned} \end{gathered}$$
(A.9)

Substituting (A.7)–(A.9) and (3.9) into (A.1), and summing up \(i\) from 1 to 3, it follows that

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\nabla u\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+\|\nabla b\|_{2}^{2} \bigr)+ \biggl(\mu+\frac{\chi}{2}\biggr)\bigl\| D^{2} u\bigr\| _{2}^{2} +\gamma\bigl\| D^{2}\omega\|_{2}^{2} +\nu\bigl\| D^{2} b\bigr\| _{2}^{2} \\ &\qquad{}+\kappa\|\operatorname{div}\nabla\omega\|_{2}^{2} \\ &\quad\le C2^{-\frac{3N}{2}}\bigl(\|\nabla u\|_{2}^{3}+\|\nabla b\|_{2}^{3}+ \|\nabla \omega\|_{2}^{3}\bigr)+CN \bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}\bigr)\|u\|_{\dot{B}_{\infty,\infty}^{1}} \\ &\qquad{} + C2^{-\frac{N}{2}}\bigl(\|\nabla u\|_{2}+\|\nabla b\|_{2}+ \|\nabla \omega\|_{2}\bigr) \bigl(\bigl\| D^{2} u\bigr\| _{2}^{2}+\bigl\| D^{2}b\bigr\| _{2}^{2}+\bigl\| D^{2}\omega\bigr\| _{2}^{2}\bigr). \end{aligned}$$
(A.10)

We choose

$$\begin{aligned} N\ge\biggl[\frac{2}{\log2}\log\frac{C(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+e)}{\min(\mu+\frac{\chi}{2},\gamma,\nu)}\biggr]+2. \end{aligned}$$

Thus (A.10) can be reduced to

$$\begin{aligned} &\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\nabla u\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+\|\nabla b\|_{2}^{2} \bigr)+ (\mu+\chi)\bigl\| D^{2} u\bigr\| _{2}^{2} +\gamma\bigl\| D^{2}\omega\|_{2}^{2} +\nu\bigl\| D^{2} b\bigr\| _{2}^{2} \\ &\qquad{}+\kappa\|\operatorname{div}\nabla\omega\|_{2}^{2} \\ &\quad\le C +C \bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}\bigr)\|u\|_{\dot{B}_{\infty,\infty}^{1}} \bigl(\log\bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+e\bigr)\bigr). \end{aligned}$$

Applying the Gronwall inequality gives that for \(t \in [0,T)\)

$$\begin{aligned} &\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+\|\nabla \omega\|_{2}^{2} \\ &\quad\le \bigl(\|\nabla u_{0}(x)\|_{2}^{2}+\|\nabla b_{0}(x)\|_{2}^{2}+ \|\nabla \omega_{0}(x)\|_{2}^{2}+CT\bigr) \\ &\qquad{}\times\exp\biggl(\int_{0}^{t}C\bigl(\| u\|_{\dot{B}_{\infty,\infty}^{1}}\bigr) \log\bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+e\bigr)\mathrm{d}\tau\biggr). \end{aligned}$$
(A.11)

Taking logarithmic on both sides of (A.11) and applying the Gronwall inequality to it, we obtain that

$$\begin{aligned} &\log\bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+e\bigr) \\ &\quad\le \log\bigl(\|\nabla u_{0}(x)\|_{2}^{2}+\|\nabla b_{0}(x)\|_{2}^{2}+ \|\nabla \omega_{0}(x)\|_{2}^{2}+CT\bigr)\exp \biggl(\int_{0}^{t}\| u\|_{\dot{B}_{\infty,\infty}^{1}}\mathrm{d}\tau\biggr), \end{aligned}$$
(A.12)

for any \(t \in [0,T)\). Therefore, by the standard arguments of continuation of local solutions, we complete the proof of Theorem 1.4. □

Proof of Theorem 1.6

In this section we prove Theorem 1.6 by energy methods. If (1.6) holds, one can deduce that for any small constant \(> 0\), there exists \(T _{0} < T\) such that

$$\begin{aligned} \int_{T_{0}}^{T}\| u\|_{\dot{B}_{\infty,\infty}^{0}}\mathrm{d}\tau\le\epsilon. \end{aligned}$$
(A.13)

We adopt the idea that was first used in [23] to prove Theorem 1.6. We first derive the \(L ^{2}\) and \(H ^{1}\) estimates by \(\int_{T_{0}}^{t}\|u\|_{\mathit{BMO}}^{2}\mathrm{d}\tau\). And then by the logarithmic Sobolev inequality (2.10) we improve it by (A.13).

Step I. \(L ^{2}\) and \(H ^{1}\)-estimates.

First, taking the \(L ^{2}\) inner product of (1.1) with \(u\), \(b\) and \(\omega \), respectively. It follows that

$$\begin{aligned} &\bigl\| (u,\omega,b)\bigr\| _{2}^{2}+ 2\mu\int_{\varepsilon}^{t}\|\nabla u\|_{2}^{2}\mathrm{d}s+ 2\gamma\int_{\varepsilon}^{t}\|\nabla \omega\|_{2}^{2}\mathrm{d}s+ 2\nu\int_{\varepsilon}^{t}\|\nabla b\|_{2}^{2}\mathrm{d}s \\ &\quad{}+ 2\kappa\int_{\varepsilon}^{t}\|\operatorname{div}\omega\|_{2}^{2}\mathrm{d}s+ 2\chi\int_{\varepsilon}^{t}\|\omega\|_{2}^{2}\mathrm{d}s\le \bigl\| \bigl(u(T_{0}),\omega(T_{0}),b(T_{0})\bigr)\bigr\| _{2}^{2} \end{aligned}$$
(A.14)

for \(0 \leq T _{0}\leq t \leq T\).

Second, similar to the proof of Theorem 1.1, we start this step from the term in (3.1). This time we estimate \(I _{1},\ldots ,I _{6}\) in another way. By Lemma 2.3 and Young inequality, we derive the following estimates

$$\begin{aligned} I_{1}&=\biggl|\int_{\mathbb{R}^{3}}u_{k}\partial_{i}(\partial_{k}u_{j}\partial_{i}u_{j})\mathrm{d}x\biggr| \\ &\le C\|u\|_{\mathit{BMO}}\|\nabla u\|_{2}\|\Delta u\|_{2} \\ &\le\frac{\mu}{2}\|\Delta u\|_{2}^{2}+C\|u\|_{\mathit{BMO}}^{2}\|\nabla u\|_{2}^{2}. \end{aligned}$$
(A.15)

Arguing similarly as the above discussion, one has

$$\begin{gathered} \begin{aligned}[b] I_{2},I_{3},I_{4}&=\biggl|\int_{\mathbb{R}^{3}}\partial_{i}(\partial_{i}b_{k}\partial_{k}b_{j})u_{j}\mathrm{d}x\biggr|\\ &\le \|u\|_{\mathit{BMO}}\|\nabla b\|_{2}\|\Delta b\|_{2}\\ &\le\frac{\nu}{6}\|\Delta b\|_{2}^{2}+C\|u\|_{\mathit{BMO}}^{2}\|\nabla b\|_{2}^{2}, \end{aligned} \end{gathered}$$
(A.16)
$$\begin{gathered} I_{5}\le\frac{\gamma}{2}\|\Delta \omega\|_{2}^{2}+C\|u\|_{\mathit{BMO}}^{2}\|\nabla \omega\|_{2}^{2}. \end{gathered}$$
(A.17)

Substituting (A.15)–(A.17) and (3.9) into (3.1), one has

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\nabla u\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+\|\nabla b\|_{2}^{2} \bigr)+ \biggl(\frac{\mu+\chi}{2}\biggr)\|\Delta u\|_{2}^{2} +\frac{\gamma}{2}\|\Delta\omega\|_{2}^{2} +\frac{\nu}{2}\|\Delta b\|_{2}^{2} \\ &\qquad{}+\kappa\|\operatorname{div}\nabla\omega\|_{2}^{2} \\ &\quad\le C\bigl(\|\nabla u\|_{2}^{2}+\|\nabla \omega\|_{2}^{2}+ \|\nabla b\|_{2}^{2}\bigr) \|u\|_{\mathit{BMO}}^{2}. \end{aligned}$$
(A.18)

The Gronwall inequality implies that

$$\begin{aligned} &\|\nabla u\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ (\mu+\chi)\int_{T_{0}}^{t}\|\Delta u\|_{2}^{2}\mathrm{d}\tau+ \gamma\int_{T_{0}}^{t}\|\Delta \omega\|_{2}^{2}\mathrm{d}\tau \\ &\qquad{}+ \nu\int_{T_{0}}^{t}\|\Delta b\|_{2}^{2}\mathrm{d}\tau+ 2\kappa\int_{T_{0}}^{t}\|\operatorname{div}\nabla\omega\|_{2}^{2}\mathrm{d}\tau \\ &\quad\le \bigl(\bigl\| \nabla u(T_{0})\bigr\| _{2}^{2}+ \bigl\| \nabla \omega(T_{0})\bigr\| _{2}^{2}+\bigl\| \nabla b(T_{0})\bigr\| _{2}^{2}\bigr)\exp \biggl(C\int_{T_{0}}^{t}\| u\|_{\mathit{BMO}}^{2}\mathrm{d}\tau\biggr). \end{aligned}$$
(A.19)

For any \(t \in [T _{0} ,T]\), we denote

$$\begin{aligned} G(t)=\sup_{T_{0}\le \tau\le t}\bigl(\bigl\| u(\tau,\cdot)\bigr\| _{H^{2}}^{2}+ \bigl\| \omega(\tau,\cdot)\bigr\| _{H^{2}}^{2}+ \bigl\| b(\tau,\cdot)\bigr\| _{H^{2}}^{2}\bigr). \end{aligned}$$
(A.20)

Applying the logarithmic Sobolev inequality (2.10) to (A.19), we have

$$\begin{aligned} &\|\nabla u\|_{2}^{2}+ \|\nabla \omega\|_{2}^{2}+\|\nabla b\|_{2}^{2}+ (\mu+\chi)\int_{T_{0}}^{t}\|\Delta u\|_{2}^{2}\mathrm{d}\tau+ \gamma\int_{T_{0}}^{t}\|\Delta \omega\|_{2}^{2}\mathrm{d}\tau \\ &\qquad{}+ \nu\int_{T_{0}}^{t}\|\Delta b\|_{2}^{2}\mathrm{d}\tau+ 2\kappa\int_{T_{0}}^{t}\|\operatorname{div}\nabla\omega\|_{2}^{2}\mathrm{d}\tau \\ &\quad\le C(T_{0}) \exp \biggl(C\int_{T_{0}}^{t}\| u\|_{\dot{B}_{\infty,\infty}^{0}}^{2}\log^{++} \bigl(\|u\|_{H^{2}}^{2}+\|\omega\|_{H^{2}}^{2}+\|b\|_{H^{2}}^{2}\bigr)\mathrm{d}\tau\biggr) \\ &\quad\le C(T_{0})G(t)^{C_{0}\epsilon}. \end{aligned}$$
(A.21)

Step II. \(H ^{2}\)-estimates.

Applying operator \(\Delta \) in (1.1) and taking the \(L ^{2}\) inner product of the resulting equations with \(\Delta u\), \(\Delta \omega \) and \(\Delta b\), respectively, we obtain

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\Delta u\|_{2}^{2}+ \|\Delta\omega\|_{2}^{2}+\|\Delta b\|_{2}^{2} \bigr)+ (\mu+\chi)\bigl\| \nabla^{3} u\bigr\| _{2}^{2}+\gamma\bigl\| \nabla^{3} \omega \bigr\| _{2}^{2} +\nu\bigl\| \nabla^{3} b\bigr\| _{2}^{2} \\ &\qquad{}+\kappa\|\operatorname{div}\Delta\omega\|_{2}^{2}+2\chi\|\Delta \omega\|_{2}^{2} \\ &\quad\le\bigl|(\Delta u\cdot\nabla u,\Delta u)\bigr| +2\bigl|(\partial_{i}u\cdot\nabla\partial_{i}u,\Delta u)\bigr| +\bigl|(\Delta b\cdot\nabla b,\Delta u)\bigr| \\ &\qquad{} +2\bigl|(\partial_{i}b\cdot\nabla\partial_{i}b,\Delta u)\bigr| +\bigl|(\Delta u\cdot\nabla b,\Delta b)\bigr| +2\bigl|(\partial_{i}u\cdot\nabla\partial_{i}b,\Delta b)\bigr| \\ &\qquad{} +\bigl|(\Delta b\cdot\nabla u,\Delta b)\bigr| +2\bigl|(\partial_{i}b\cdot\nabla\partial_{i}u,\Delta b)\bigr| + \bigl|(\Delta u\cdot\nabla \omega,\Delta \omega)\bigr| \\ &\qquad{} +2\bigl|(\partial_{i}u\cdot\nabla\partial_{i}\omega,\Delta \omega)\bigr| + 2\chi\bigl|(\nabla\times\Delta u,\Delta\omega)\bigr| \\ &\quad\triangleq \sum_{j=1}^{11}J_{j}. \end{aligned}$$
(A.22)

By Hölder, Gagliardo-Nirenberg and Young inequalities, we have

$$\begin{gathered} \begin{aligned}[b] J_{1},J_{2}&\le\|\nabla u\|_{2}\|\Delta u\|_{1}^{2} \\ &\le C\|\nabla u\|_{2}\|\Delta u\|_{2}^{\frac{1}{4}}\bigl\| \nabla^{3} u\bigr\| _{2}^{\frac{\gamma}{4}} \\ &\le\frac{\mu}{16} \bigl\| \nabla^{3} u\bigr\| _{2}^{2}+C\|\nabla u\|_{2}^{8}\|\nabla u\|_{2}^{2}, \end{aligned} \end{gathered}$$
(A.23)
$$\begin{gathered} \begin{aligned}[b] J_{3},J_{4},J_{5},J_{6},J_{7},J_{8}&\le \|\nabla b\|_{2}\bigl(\|\Delta u\|_{4}^{2}+\|\Delta b\|_{4}^{2}\bigr) \\ &\le \frac{\mu}{16}\bigl\| \nabla^{3} u\bigr\| _{2}^{2}+\frac{\nu}{12}\bigl\| \nabla^{3} b\bigr\| _{2}^{2} +C\|\nabla b\|_{2}^{8} \bigl(\|\nabla u\|_{2}^{2}+\|\nabla b\|_{2}^{2}\bigr). \end{aligned} \end{gathered}$$
(A.24)

Arguing similarly as the above, we obtain

$$\begin{aligned} J_{9},J_{10}\le \frac{\mu}{16}\bigl\| \nabla^{3} u\bigr\| _{2}^{2}+\frac{\gamma}{4}\bigl\| \nabla^{3} \omega\bigr\| _{2}^{2} +C\|\nabla \omega\|_{2}^{8} \bigl(\|\nabla u\|_{2}^{2}+\|\nabla \omega\|_{2}^{2}\bigr). \end{aligned}$$
(A.25)

We also have

$$\begin{aligned} J_{11}\le2\chi\|\Delta\omega\|_{2}^{2}+\frac{\chi}{2}\bigl\| \nabla^{3} u\bigr\| _{2}^{2}. \end{aligned}$$
(A.26)

Collecting (A.23)–(A.26) into (A.22), we arrive at

$$\begin{aligned} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl(\|\Delta u\|_{2}^{2}+ \|\Delta \omega\|_{2}^{2}+\|\Delta b\|_{2}^{2} \bigr)+ \biggl(\frac{\mu+\chi}{2}\biggr) \bigl\| \nabla^{3} u\bigr\| _{2}^{2} +\frac{\gamma}{2}\bigl\| \nabla^{3} \omega\bigr\| _{2}^{2} \\ &\qquad{} +\frac{\nu}{2}\bigl\| \nabla^{3} b\bigr\| _{2}^{2} +\kappa\|\operatorname{div}\Delta\omega\|_{2}^{2} \\ &\quad\le C\bigl(\|\nabla u\|_{2}^{8}+\|\nabla \omega\|_{2}^{8}+ \|\nabla b\|_{2}^{8}\bigr) \bigl(\|\nabla u\|_{2}^{2}+\|\nabla \omega\|_{2}^{2}+ \|\nabla b\|_{2}^{2}\bigr) \\ &\quad\le C(T_{0})G(t)^{5C_{0}\epsilon}. \end{aligned}$$
(A.27)

Integrating the above estimate and combining (A.14), it can be derived that

$$\begin{aligned} G(t)\le \bigl\| \nabla^{2} u(T_{0})\bigr\| _{2}^{2}+ \bigl\| \nabla^{2} \omega(T_{0})\bigr\| _{2}^{2}+\bigl\| \nabla^{2} b(T_{0})\bigr\| _{2}^{2} + C\int_{T_{0}}^{t}G(\tau)^{5C_{0}\epsilon}\mathrm{d}\tau. \end{aligned}$$
(A.28)

Choosing small enough such that \(5C_{0}\epsilon= 1\), it can be derived that

$$\begin{aligned} G(t) \leq C(T_{0}) < \infty . \end{aligned}$$
(A.29)

By the standard arguments of weak solution’s regularity, we complete the proof of Theorem 1.6. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Li, X. Regularity of Weak Solutions to the 3D Magneto-Micropolar Equations in Besov Spaces. Acta Appl Math 163, 207–223 (2019). https://doi.org/10.1007/s10440-018-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0220-z

Keywords

Mathematics Subject Classification (2000)

Navigation