Skip to main content
Log in

On the (Non)Removability of Spectral Parameters in \(\mathbb{Z}_{2}\)-Graded Zero-Curvature Representations and Its Applications

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We generalise to the \(\mathbb{Z}_{2}\)-graded set-up a practical method for inspecting the (non)removability of parameters in zero-curvature representations for partial differential equations (PDEs) under the action of smooth families of gauge transformations. We illustrate the generation and elimination of parameters in the flat structures over \(\mathbb{Z}_{2}\)-graded PDEs by analysing the link between deformation of zero-curvature representations via infinitesimal gauge transformations and, on the other hand, propagation of linear coverings over PDEs using the Frölicher–Nijenhuis bracket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Zero-curvature representations for partial differential equations are the input data for realisation of the inverse scattering method. For PDEs with unknown functions in two independent variables, the most interesting zero-curvature representations are those which contain a non-removable spectral parameter; in that case the system of PDEs can be kinematically integrable [15, 16].

  2. An obvious logical and geometric distinction between the locus \(\mathcal{E}^{\infty }\) and its algebraic description by using the \(C^{\infty }\)-smooth left-hand sides in the system \(D_{\tau }(F^{\ell })=0\) is that the latter are always defined yet they can describe the empty set. For instance, consider the overdetermined partial differential equation \(\mathcal{E}=\{u_{xx}=1, u_{y}=x^{2}\}\) for which \((u_{xx})_{y}=0\neq 2=(u_{y})_{xx}\). Likewise, the equation \(\mathcal{E}=\{v_{x}=u, v_{y}=u\}\) can be solved only if the compatibility condition \(v_{xy}=v_{yx}\) is satisfied, thus \(u_{x}=u_{y}\) is the constraint due to which the projection of \(\mathcal{E}^{\infty }\) down to ℰ is not surjective.

  3. Neither the set \(\mathcal{E}\subseteq J^{k}(\pi )\) nor its prolongation \(\mathcal{E}^{\infty }\subseteq J^{\infty }(\pi )\) may be expected to be submanifolds in the respective jet spaces. For example, consider the differential equation \(\mathcal{E}=\{u_{x}^{2}=u ^{2}\}\subset J^{1}(\pi )\) which cuts the diagonal cross (i.e. already not a submanifold) in the coordinate plane \(Ouu_{x}\) within \(J^{1}( \pi )\). (It is clear also that the set of solutions to the differential equation \((\frac{{\mathrm{d}}}{{\mathrm{d}}x}{ |}_{x_{0}-0} u )^{2}= (u(x_{0}) )^{2}\) on \(M^{1}=\mathbb{R}\ni x_{0}\) is immense, compared with the solution sets for the equations \(u_{x}=u\) and \(u _{x}=-u\).) Moreover, should there be two independent variables, \(x\) and \(t\), so that \(\mathcal{E}=\{u_{x}^{2}=u^{2}\}\) is a partial differential equation, then it is readily seen that, parameterised by using infinitely many variables \(x\), \(t\), \(u\), \(u _{t}\), \(u_{tt}, \ldots , u_{t\cdots t}, \ldots \), the locus \(\mathcal{E}^{\infty }\) is not a submanifold in \(J^{\infty }(\pi )\) as well.

  4. We recall that \(\mathfrak{g}\) is the matrix Lie (super-)algebra of a given matrix Lie (super-)group \(G\), whence the multiplication \(Q_{\lambda }\cdot S_{\lambda }\) is induced by the ordinary multiplication of (super-)matrices.

  5. The horizontal cohomology groups introduced by Marvan in [22, 23] are informative for the algebraic approach to kinematic integrability, yet they may be hard to compute (in fact, this has not been attempted industrially). It is the removability of “fake” parameters in the zero-curvature representations which must be focused on first; whenever it is established that a parameter cannot be removed in a smooth way from a smooth family, the integration of PDE under study by using the inverse scattering [15, 16] should be attempted as the proper next step (or a nontrivial Gardner deformation of that system be derived from the family of zero-curvature representations, and the integrals of motion be constructed).

  6. At the same time, we do not claim that no non-removable parameter can be inserted into the \(\mathfrak{sl}(2|1)\)-valued zero-curvature representation \(\alpha ^{\text{5ord}}_{0}\). Indeed, to establish that one must prove the vanishing of the respective gauge cohomology group.

  7. The notion of Cartan differential \({\mathrm{d}}_{\mathcal{C}}\) and its restriction to equations \(\mathcal{E}^{\infty }\) is recalled in §2.3.

  8. Here and in what follows we underline the covering that encodes Gardner’s deformation (15a)–(15b) for the classical KdV equation (14).

  9. Remarkably, that zero-curvature representation for (16a)–(16b) was re-discovered in [61] not in the context of super-system (6a)–(6d).

  10. A recursion operator, formulated for (9a)–(9b) in terms of superfields and superderivatives, was conjectured in [32].

  11. This cohomology theory is helpful for solution of a different problem, namely, construction of parametric families of zero-curvature representations with nonremovable parameters (see [23] for details).

  12. A parameter-dependent zero-curvature representation for Burgers’ equation was considered in [68] in the same context of pseudospherical surfaces as in Sasaki’s paper [37]. We refer to [22] for the analysis of removability of the parameter in that zero-curvature representation for Burgers’ equation [68].

  13. For example, consider a “fake” \(\mathfrak{sl}_{2}\)-valued zero-curvature representation \(\alpha = \bigl({\scriptsize\begin{matrix}{} 0 &\ X_{1} + \lambda X_{2} \cr 0 &\ 0 \end{matrix}}\bigr) {\mathrm{d}}x + \bigl({\scriptsize\begin{matrix}{} 0 &\ T_{1} + \lambda T_{2} \cr 0 &\ 0 \end{matrix}}\bigr) {\mathrm{d}}t\) for an equation ℰ possessing two conserved currents \(\bar{D}_{t} X_{i} = \bar{D}_{x} T_{i}\), here \(i=1,2\).

References

  1. Labelle, P., Mathieu, P.: A new \(N=2\) supersymmetric Korteweg-de Vries equation. J. Math. Phys. 32(4), 923–927 (1991). https://doi.org/10.1063/1.529351

    Article  MathSciNet  MATH  Google Scholar 

  2. Hussin, V., Kiselev, A.V., Krutov, A.O., Wolf, T.: \(N=2\) supersymmetric \(a=4\)-Korteweg–de Vries hierarchy derived via Gardner’s deformation of Kaup–Boussinesq equation. J. Math. Phys. 51(8), 083507 (2010). https://doi.org/10.1063/1.3447731. arXiv:0911.2681 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  3. Kiselev, A.V., Krutov, A.O.: Gardner’s deformations of the graded Korteweg–de Vries equations revisited. J. Math. Phys. 53(10), 103511 (2012). https://doi.org/10.1063/1.4754288. arXiv:1108.2211 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  4. Miura, R.M.: Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9, 1202–1204 (1968). https://doi.org/10.1063/1.1664700

    Article  MathSciNet  MATH  Google Scholar 

  5. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968). https://doi.org/10.1063/1.1664701

    Article  MathSciNet  MATH  Google Scholar 

  6. Laberge, C.A., Mathieu, P.: \(N=2\) superconformal algebra and integrable \(\mathrm{O}(2)\) fermionic extensions of the Korteweg-de Vries equation. Phys. Lett. B 215(4), 718–722 (1988). https://doi.org/10.1016/0370-2693(88)90048-2

    Article  MathSciNet  Google Scholar 

  7. Mathieu, P.: Open problems for the super KdV equations. In: Bäcklund and Darboux Transformations. The Geometry of Solitons, Halifax, NS, 1999. CRM Proc. Lecture Notes, vol. 29, pp. 325–334. Am. Math. Soc., Providence (2001). arXiv:math-ph/0005007

    Chapter  Google Scholar 

  8. Kiselev, A.V., Krutov, A.O.: Gardner’s deformation of the Krasil’shchik–Kersten system. J. Phys. Conf. Ser. 621(1), 012007 (2015). https://doi.org/10.1088/1742-6596/621/1/012007. Group Analysis of Differential Equations and Integrable Systems (GADEISVII) (June 15–19, 2014, Larnaca, Cyprus), arXiv:1409.6688 [nlin.SI]

    Article  Google Scholar 

  9. Krutov, A.O.: Deformations of equations and structures in nonlinear problems of mathematical physics. Ph.D. Thesis. University of Groningen, JBI, The Netherlands (2014)

  10. Wahlquist, H.D., Estabrook, F.B.: Prolongation structures of nonlinear evolution equations. J. Math. Phys. 16, 1–7 (1975). https://doi.org/10.1063/1.522396

    Article  MathSciNet  MATH  Google Scholar 

  11. Estabrook, F.B., Wahlquist, H.D.: Prolongation structures of nonlinear evolution equations. II. J. Math. Phys. 17(7), 1293–1297 (1976). https://doi.org/10.1063/1.523056

    Article  MathSciNet  MATH  Google Scholar 

  12. Kupershmidt, B.A.: Deformations of integrable systems. Proc. R. Ir. Acad. Sect. A 83(1), 45–74 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Fordy, A.P.: Projective representations and deformations of integrable systems. Proc. R. Ir. Acad. Sect. A 83(1), 75–93 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Kiselev, A.V.: Algebraic properties of Gardner’s deformations for integrable systems. Theor. Math. Phys. 152(1), 963–976 (2007). https://doi.org/10.1007/s11232-007-0081-5. arXiv:nlin/0610072 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  15. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer Series in Soviet Mathematics. Springer, Berlin (1987), x+592 pp.

    Book  MATH  Google Scholar 

  16. Zakharov, V., Shabat, A.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II. Funct. Anal. Appl. 13(3), 166–174 (1979). https://doi.org/10.1007/BF01077483

    Article  MathSciNet  MATH  Google Scholar 

  17. González-López, A., Kamran, N., Olver, P.J.: Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. 64(2), 339–368 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Popovych, R.O., Boyko, V.M., Nesterenko, M.O., Lutfullin, M.W.: Realizations of real low-dimensional Lie algebras. J. Phys. A, Math. Gen. 36(26), 7337–7360 (2003). https://doi.org/10.1088/0305-4470/36/26/309. arXiv:math-ph/0301029

    Article  MathSciNet  MATH  Google Scholar 

  19. Shchepochkina, I.M.: How to realize a Lie algebra by vector fields. Theor. Math. Phys. 147(3), 821–838 (2006). https://doi.org/10.1007/s11232-006-0078-5. arXiv:math/0509472 [math.RT]

    Article  MathSciNet  MATH  Google Scholar 

  20. Roelofs, M.: Prolongation structures of supersymmetric systems. Ph.D. Thesis. University of Twente, Enschede, The Netherlands (1993)

  21. Nesterenko, M.: Realizations of Lie algebras. Phys. Part. Nucl. Lett. 11(7), 987–989 (2014). https://doi.org/10.1134/S1547477114070346

    Article  Google Scholar 

  22. Marvan, M.: On the horizontal gauge cohomology and nonremovability of the spectral parameter. Acta Appl. Math. 72(1–2), 51–65 (2002). https://doi.org/10.1023/A:1015218422059

    Article  MathSciNet  MATH  Google Scholar 

  23. Marvan, M.: On the spectral parameter problem. Acta Appl. Math. 109(1), 239–255 (2010). https://doi.org/10.1007/s10440-009-9450-4. arXiv:0804.2031 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakovich, S.Y.: On zero-curvature representations of evolution equations. J. Phys. A, Math. Gen. 28(10), 2861–2869 (1995). https://doi.org/10.1088/0305-4470/28/10/016

    Article  MathSciNet  MATH  Google Scholar 

  25. Sakovich, S.Y.: Cyclic bases of zero-curvature representations: five illustrations to one concept. Acta Appl. Math. 83(1–2), 69–83 (2004). https://doi.org/10.1023/B:ACAP.0000035589.61486.a7. arXiv:nlin/0212019 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  26. Das, A., Huang, W.-J., Roy, S.: Zero curvature condition of \(\mathrm{OSp}(2/2)\) and the associated supergravity theory. Int. J. Mod. Phys. A 7(18), 4293–4311 (1992). https://doi.org/10.1142/S0217751X92001915

    Article  MathSciNet  MATH  Google Scholar 

  27. Igonin, S., Kersten, P.H.M., Krasil’shchik, I.: On symmetries and cohomological invariants of equations possessing flat representations. Differ. Geom. Appl. 19(3), 319–342 (2003). https://doi.org/10.1016/S0926-2245(03)00049-4. arXiv:math/0301344 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  28. Igonin, S., Krasil’shchik, J.: On one-parametric families of Bäcklund transformations. In: Lie Groups, Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie, Kyoto/Nara, 1999. Adv. Stud. Pure Math., vol. 37, pp. 99–114. Math. Soc. Japan, Tokyo (2002). arXiv:nlin/0010040 [nlin.SI]

    Chapter  Google Scholar 

  29. Krasil’shchik, I.S.: Algebras with flat connections and symmetries of differential equations. In: Lie Groups and Lie Algebras. Math. Appl., vol. 433, pp. 407–424. Kluwer Academic, Dordrecht (1998)

    Chapter  Google Scholar 

  30. Kiselev, A.V.: On the Bäcklund autotransformation for the Liouville equation. Vestn. Mosk. Univ., Ser. III Fiz. Astronom. 6, 22–26 (2002)

    MATH  Google Scholar 

  31. Baran, K., Marvan, M.: A conjecture on nonlocal terms of recursion operators. Fundam. Prikl. Mat. 12(7), 23–33 (2006). https://doi.org/10.1007/s10958-008-9030-6

    Article  MATH  Google Scholar 

  32. Tian, K., Liu, Q.P.: Supersymmetric fifth order evolution equations. In: Nonlinear and Modern Mathematical Physics, Beijing, China, July 15–21, 2009. AIP Conf. Proc., vol. 1212, pp. 81–88 (2010). https://doi.org/10.1063/1.3367084

    Chapter  Google Scholar 

  33. Tian, K., Wang, J.P.: Symbolic representation and classification of \(N=1\) supersymmetric evolutionary equations. Stud. Appl. Math. 138(4), 467–498 (2017). https://doi.org/10.1111/sapm.12163. arXiv:1607.03947 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  34. Dodd, R., Fordy, A.: The prolongation structures of quasipolynomial flows. Proc. R. Soc. Lond. Ser. A 385(1789), 389–429 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dodd, R.K., Fordy, A.P.: Prolongation structures of complex quasipolynomial evolution equations. J. Phys. A 17(16), 3249–3266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kaup, D.J.: The Estabrook–Wahlquist method with examples of application. Physica D 1(4), 391–411 (1980). https://doi.org/10.1016/0167-2789(80)90020-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Sasaki, R.: Soliton equations and pseudospherical surfaces. Nucl. Phys. B 154(2), 343–357 (1979). https://doi.org/10.1016/0550-3213(79)90517-0

    Article  MathSciNet  Google Scholar 

  38. Berezin, F.A.: Introduction to superanalysis. In: Mathematical Physics and Applied Mathematics. Reidel, Dordrecht (1987)

    Google Scholar 

  39. Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.): Quantum Fields and Strings: A Course for Mathematicians, vols. 1–2. AMS/Institute for Advanced Study (IAS), Providence/Princeton (1999). Vol. 1: xxii+723 pp.; Vol. 2: pp. i–xxiv and 727–1501 pp.

    MATH  Google Scholar 

  40. Kersten, P., Krasil’shchik, I., Verbovetsky, A.: Hamiltonian operators and \(\ell ^{*}\)-coverings. J. Geom. Phys. 50(1–4), 273–302 (2004). https://doi.org/10.1016/j.geomphys.2003.09.010. arXiv:math/0304245 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  41. Krasil’shchik, J., Verbovetsky, A.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61(9), 1633–1674 (2011). https://doi.org/10.1016/j.geomphys.2010.10.012. arXiv:1002.0077 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  42. Vinogradov, A.M.: The \({\mathcal{C}}\)-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. J. Math. Anal. Appl. 100(1), 1–40 (1984). https://doi.org/10.1016/0022-247X(84)90071-4

    Article  MathSciNet  MATH  Google Scholar 

  43. Vinogradov, A.M.: The \({\mathcal{C}}\)-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl. 100(1), 41–129 (1984). https://doi.org/10.1016/0022-247X(84)90072-6

    Article  MathSciNet  MATH  Google Scholar 

  44. Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor’kova, N.G., Krasil’shchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., Vinogradov, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Translations of Mathematical Monographs, vol. 182. Am. Math. Soc., Providence (1999), xiv+333 pp.

    Book  MATH  Google Scholar 

  45. Nestruev, J.: Smooth Manifolds and Observables. Graduate Texts in Mathematics, vol. 220. Springer, New York (2003), xiv+222 pp.

    MATH  Google Scholar 

  46. Leites, D.A.: Introduction to the theory of supermanifolds. Russ. Math. Surv. 35(1), 1–64 (1980). https://doi.org/10.1070/RM1980v035n01ABEH001545

    Article  MathSciNet  MATH  Google Scholar 

  47. Krasil’shchik, I.S., Kersten, P.H.M.: Symmetries and recursion operators for classical and supersymmetric differential equations. In: Mathematics and Its Applications, vol. 507. Kluwer Academic, Dordrecht (2000), xvi+384 pp.

    MATH  Google Scholar 

  48. Kiselev, A.V.: The twelve lectures in the (non)commutative geometry of differential equations. Preprint IHÉS/M/12/13 (Bures-sur-Yvette, France) (2012). http://preprints.ihes.fr/2012/M/M-12-13.pdf

  49. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4350-2

    Book  MATH  Google Scholar 

  50. Kiselev, A.V., Krutov, A.O.: Non-Abelian Lie algebroids over jet spaces. J. Nonlinear Math. Phys. 21(2), 188–213 (2014). https://doi.org/10.1080/14029251.2014.900992. arXiv:1305.4598 [math.DG]

    Article  MathSciNet  Google Scholar 

  51. Goldschmidt, H.: Existence theorems for analytic linear partial differential equations. Ann. Math. (2) 86, 246–270 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  52. Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations. J. Differ. Geom. 1, 269–307 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kiselev, A.V.: The geometry of variations in Batalin–Vilkovisky formalism. J. Phys. Conf. Ser. 474(1), 012024 (2013). arXiv:1312.1262 [math-ph]

    Article  Google Scholar 

  54. Kiselev, A.V.: The calculus of multivectors on noncommutative jet spaces. J. Geom. Phys. 130, 130–167 (2018). https://doi.org/10.1016/j.geomphys.2018.03.022. arXiv:1210.0726 [math.DG]

    Article  MathSciNet  MATH  Google Scholar 

  55. Krasil’shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 15(1–2), 161–209 (1989). https://doi.org/10.1007/BF00131935

    Article  MathSciNet  MATH  Google Scholar 

  56. Manin, Y.: Holomorphic supergeometry and Yang-Mills superfields. J. Sov. Math. 30(2), 1927–1975 (1985). https://doi.org/10.1007/BF02105859

    Article  MATH  Google Scholar 

  57. Kiselev, A.V., Hussin, V.: Hirota’s virtual multisoliton solutions of \(N=2\) supersymmetric Korteweg-de Vries equations. Theor. Math. Phys. 159(3), 490–501 (2009). https://doi.org/10.1007/s11232-009-0071-x. arXiv:0810.0930 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  58. Kiselev, A.V., Wolf, T.: Classification of integrable super-systems using the SsTools environment. Comput. Phys. Commun. 177(3), 315–328 (2007). https://doi.org/10.1016/j.cpc.2007.02.113. arXiv:nlin/0609065 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  59. Kiselev, A.V., Golovko, V.A.: On non-Abelian coverings over the Liouville equation. Acta Appl. Math. 83(1–2), 25–37 (2004). https://doi.org/10.1023/B:ACAP.0000035587.01597.e0

    Article  MathSciNet  MATH  Google Scholar 

  60. Kaup, D.J.: A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 54(2), 396–408 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  61. Borisov, A.B., Pavlov, M.P., Zykov, S.A.: Proliferation scheme for Kaup–Boussinesq system. Physica D 152/153, 104–109 (2001). https://doi.org/10.1016/S0167-2789(01)00163-4

    Article  MathSciNet  MATH  Google Scholar 

  62. Catalano Ferraioli, D., de Oliveira Silva, L.A.: Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry actions. J. Geom. Phys. 94, 185–198 (2015). https://doi.org/10.1016/j.geomphys.2015.04.001

    Article  MathSciNet  MATH  Google Scholar 

  63. Kiselev, A.V., Krutov, A., Wolf, T.: Computing symmetries and recursion operators of evolutionary super-systems using the SsTools environment. In: Euler, N. (ed.) Nonlinear Systems and Their Remarkable Mathematical Structures. CRC Press, Boca Raton (2018). arXiv:1805.12397 [nlin.SI]

    Google Scholar 

  64. Marvan, M.: On zero-curvature representations of partial differential equations. In: Differential Geometry and Its Applications, Opava, 1992. Math. Publ., vol. 1, pp. 103–122. Silesian Univ. Opava, Opava (1993)

    MATH  Google Scholar 

  65. Marvan, M.: A direct procedure to compute zero-curvature representations. The case \(\mathfrak{sl}_{2}\). In: The International Conference on Secondary Calculus and Cohomological Physics, Moscow, 1997. Diffiety Inst. Russ. Acad. Nat. Sci., Pereslavl’ Zalesskiy, p. 9 (1997)

    Google Scholar 

  66. Berezin, F.A.: Introduction to Superanalysis. MCCME, Moscow (2013). Revised and edited by D. Leites and with appendix “Seminar on Supersymmetry. Vol. 1 1/2”

    Google Scholar 

  67. Shander, V.: Invariant functions on supermatrices (1998). Preprint. arXiv:math/9810112 [math.RT]

  68. Chern, S.S., Tenenblat, K.: Pseudo-spherical surfaces and evolution equations. Stud. Appl. Math. 74(1), 55–83 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  69. Marvan, M.: Sufficient set of integrability conditions of an orthonomic system. Found. Comput. Math. 9(6), 651–674 (2009). https://doi.org/10.1007/s10208-008-9039-8. arXiv:nlin/0605009 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  70. Marvan, M.: Reducibility of zero curvature representations with application to recursion operators. Acta Appl. Math. 83(1–2), 39–68 (2004). https://doi.org/10.1023/B:ACAP.0000035588.67805.0b. arXiv:nlin/0306006 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  71. Levi, D., Sym, A., Tu, G.Z.: A working algorithm to isolate integrable surfaces in \(\mathbb{E}^{3}\). Preprint DF INFN 761, Roma, Oct. 10 (1990)

  72. Cieśliński, J.: Nonlocal symmetries and a working algorithm to isolate integrable geometries. J. Phys. A, Math. Gen. 26(5), L267–L271 (1993). https://doi.org/10.1088/0305-4470/26/5/017

    Article  MathSciNet  MATH  Google Scholar 

  73. Cieśliński, J.: Group interpretation of the spectral parameter in the case of nonhomogeneous, nonlinear Schrödinger system. J. Math. Phys. 34(6), 2372–2384 (1993). https://doi.org/10.1063/1.530122

    Article  MathSciNet  MATH  Google Scholar 

  74. Cieśliński, J., Goldstein, P., Sym, A.: On integrability of the inhomogeneous Heisenberg ferromagnet model: examination of a new test. J. Phys. A, Math. Gen. 27(5), 1645 (1994). https://doi.org/10.1088/0305-4470/27/5/028

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to I.S. Krasil’shchik, D.A. Leites, M. Marvan, M.A. Nesterenko, P.J. Olver, W.M. Seiler, and A.M. Verbovetsky for helpful correspondence and constructive criticisms. The authors thank P. Mathieu for his attention to this work; the authors are grateful to the anonymous referees for remarks and advice.

This research was done in part while the first author was visiting at the MPIM (Bonn) and the second author was visiting at Utrecht University and New York University Abu Dhabi; the hospitality and support of these institutions are gratefully acknowledged. The research of the first author was partially supported by JBI RUG project 106552 (Groningen); the second author was supported by ISPU scholarship for young scientists and WCMCS post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey O. Krutov.

Appendices

Appendix A: Proof of Proposition 2

To verify the claim, let us first introduce some helpful notation. The number \(k\) is called the differential order of a differential function \(f(x,t,[u^{j},\xi ^{l}])\) with respect to the variable \(u^{j}\) if following conditions hold:

  1. (1)

    the function \(f\) essentially depends on the \(k\)th order derivative of \(u ^{j}\) with respect to \(x\):

    $$ \frac{\partial f}{\partial u^{j}_{\sigma }} \neq 0, \quad \sigma = (x\dots x),\ |\sigma | = k; $$
  2. (2)

    the function \(f\) does not depend on derivatives of \(u^{j}\) of order higher than \(k\) with respect to \(x\):

    $$ \forall p >k,\quad \frac{\partial f}{\partial u^{j}_{\sigma }} = 0, \quad \sigma = (x\dots x),\ |\sigma |= p. $$

We denote by \(\operatorname{dord}_{x}^{u^{j}} (f)\) the differential order of a given function \(f\) with respect to \(u^{j}\). In the same manner we define the differential order \(\operatorname{dord}_{x}^{\xi ^{l}}(f)\) of differential function \(f(x,t, [u^{j},\xi ^{l}])\) with respect to the odd variables \(\xi ^{l}\).

For \(N=2\), \(a=4\)-SKdV equation (6a)–(6d) we have that \({u^{1}=u_{0}}\), \({u^{2} = u_{12}}\), \({\xi ^{1}=u_{1}}\), \({\xi ^{2}=u _{2}}\). The maximum of four numbers \(\operatorname{dord}_{x}^{u_{0}} (f)\), \(\operatorname{dord}_{x}^{u_{1}} (f)\), \(\operatorname{dord}_{x} ^{u_{2}} (f)\), and \(\operatorname{dord}_{x}^{u_{12}} (f)\) is called the differential order of the function \(f(x,t,[u_{0},u_{1},u_{2},u _{12}])\), denoted by \(\operatorname{dord}_{x} (f)\). The maximum of \(\operatorname{dord}_{x} (a_{ij})\), where \(a_{ij}\)’s are the entries of a given matrix \(A\) with differential-functional coefficients, is the differential order of the matrix \(A\); it is denoted by \(\operatorname{dord}_{x} (A)\). Obviously, the following formulas hold:

$$\begin{aligned} 0 \leqslant \operatorname{dord}_{x} (f + g) \leqslant & \max \bigl\{ \operatorname{dord}(f), \operatorname{dord}(g)\bigr\} , \\ 0 \leqslant \operatorname{dord}_{x} (f\cdot g) \leqslant & \max \bigl\{ \operatorname{dord}(f), \operatorname{dord}(g)\bigr\} , \\ \operatorname{dord}_{x} (\bar{D}_{x} f) =& \textstyle\begin{cases} \operatorname{dord}_{x} (f) + 1 &\text{if } f = f(x,t,[u_{0},u_{1},u _{2},u_{12}]), \\ 0 &\text{if } f = f(x,t). \end{cases}\displaystyle \end{aligned}$$

Now, for the matrix (7) we have that

$$ \operatorname{dord}_{x} A = 0, \qquad \operatorname{dord}_{x} \frac{\partial }{\partial \varepsilon } A = 0. $$

Let us calculate the maximal differential order of left-hand side of Eq. (8a),

$$ \operatorname{dord}_{x} \biggl( \frac{\partial }{\partial \varepsilon } A + \underline{[}A, Q \underline{{]}} \biggr) \leqslant \operatorname{dord}_{x} (Q). $$

The differential orders of the right-hand side and the left-hand side of Eq. (8a) must coincide. Therefore, we have that

$$ \operatorname{dord}_{x} (\bar{D}_{x} Q) = \operatorname{dord}_{x} (Q). $$

This equality holds only in the case when all entries of the matrix \(Q\) do not depend on \(u_{0}\), \(u_{1}\), \(u_{2}\), and \(u_{12}\). This implies that the total derivative \(\bar{D}_{x}\) in Eq. (8a) amounts to the partial derivative \({\partial }/{\partial x}\). We finally obtain the following system of equations for the entries \(q_{ij}\) of the matrix \(Q\):

$$\begin{aligned} \frac{\partial }{\partial x} q_{11} =& - u_{2}q_{31} \varepsilon ^{-1} - \boldsymbol{i}u_{1}q_{31} \varepsilon ^{-1} + u_{0}^{2}q_{21} \varepsilon ^{-1} - \boldsymbol{i}u_{0} q_{21} \varepsilon ^{-2} + u_{12} q_{21}\varepsilon ^{-1} + q_{12}\varepsilon , \end{aligned}$$
(22a)
$$\begin{aligned} \frac{\partial }{\partial x} q_{12} =& - u_{2}(q_{32} + q_{13} \varepsilon )\varepsilon ^{-1} + \boldsymbol{i}u_{1}( - q_{32} + q_{13} \varepsilon )\varepsilon ^{-1} + u_{0}^{2}( - \varepsilon q_{11} + \varepsilon q_{22} - 1)\varepsilon ^{-2} \\ & {} + \boldsymbol{i}u_{0} (\varepsilon q_{11} - \varepsilon q _{22} + 2)\varepsilon ^{-3} + u_{12} ( - \varepsilon q_{11} + \varepsilon q_{22} - 1)\varepsilon ^{-2} + q_{12}\varepsilon ^{-1}, \end{aligned}$$
(22b)
$$\begin{aligned} \frac{\partial }{\partial x} q_{13} =& u_{2}( - \varepsilon q _{22} + 1)\varepsilon ^{-2} + \boldsymbol{i}u_{1}( - \varepsilon q_{22} + 1 )\varepsilon ^{-2} + u_{0}^{2}q_{23}\varepsilon ^{-1} + \boldsymbol{i}u_{0} \bigl( - q_{23} + q_{13} \varepsilon ^{2}\bigr)\varepsilon ^{-2} \\ & {} + u_{12} q_{23}\varepsilon ^{-1} + q_{13}\varepsilon ^{-1}, \end{aligned}$$
(22c)
$$\begin{aligned} \frac{\partial }{\partial x} q_{21} =& - q_{11}\varepsilon + q _{22}\varepsilon - 1 - q_{21}\varepsilon ^{-1}, \end{aligned}$$
(22d)
$$\begin{aligned} \frac{\partial }{\partial x} q_{22} =& - u_{2}q_{23} + \boldsymbol{i}u_{1}q_{23} - u_{0}^{2}q_{21} \varepsilon ^{-1} + \boldsymbol{i}u_{0} q_{21} \varepsilon ^{-2} - u_{12} q_{21}\varepsilon ^{-1} - \varepsilon q_{12} + \varepsilon ^{-2}, \end{aligned}$$
(22e)
$$\begin{aligned} \frac{\partial }{\partial x} q_{23} =& q_{21}u_{2} \varepsilon ^{-1} + \boldsymbol{i}q_{21}u_{1} \varepsilon ^{-1} + \boldsymbol{i}u _{0} q_{23} - \varepsilon q_{13}, \end{aligned}$$
(22f)
$$\begin{aligned} \frac{\partial }{\partial x} q_{31} =& - q_{21}u_{2} + \boldsymbol{i}q_{21}u_{1} - \boldsymbol{i}u_{0} q_{31} + q_{32}\varepsilon - q_{31}\varepsilon ^{-1}, \end{aligned}$$
(22g)
$$\begin{aligned} \frac{\partial }{\partial x} q_{32} =& q_{11}u_{2} - \boldsymbol{i}q_{11}u_{1} - u_{0}^{2}q_{31} \varepsilon ^{-1} + \boldsymbol{i}u_{0} \bigl( - q_{32}\varepsilon ^{2} + q_{31}\bigr)\varepsilon ^{-2} - u_{12} q_{31} \varepsilon ^{-1}. \end{aligned}$$
(22h)

Since every \(q_{ij}\) does not depend on \(u_{0}\), \(u_{1}\), \(u_{2}\), and \(u_{12}\), it follows that the coefficients of nonzero powers of \(u_{0}\), \(u_{1}\), \(u_{2}\), and \(u_{12}\) in (22a)–(22h) are equal to zero. We obtain the system

$$\begin{aligned} \textstyle\begin{array}{rl@{\qquad}rl@{\qquad}rl} q_{31} &= 0, & q_{32} + q_{13}\varepsilon &= 0, & - q_{32} + q_{13} \varepsilon &= 0, \\ q_{23} & = 0 , & - q_{11}\varepsilon + q_{22}\varepsilon - 1 &= 0, & - q_{32} \varepsilon ^{2} + q_{31} & = 0 , \\ q_{11} \varepsilon - q_{22}\varepsilon + 2 &= 0 , & - q_{22}\varepsilon + 1 &= 0, & q_{11} &= 0 . \end{array}\displaystyle \end{aligned}$$
(23)

By adding the last equation in the first column, \(q_{11} \varepsilon - q_{22}\varepsilon + 2 = 0\), to the second equation in the other column, \(- q_{11}\varepsilon + q_{22}\varepsilon - 1 = 0\), we obtain the contradiction \(1=0\). Therefore, system (23) is not compatible. This proves Proposition 2: there is no \(\mathfrak{sl}(2| 1)\)-matrix \(Q\) satisfying Eqs. (8a)–(8b) at \(\varepsilon >0\).

Appendix B: Two Descriptions of One Elimination Procedure: An Example

We analyse the following tautological construction: by re-addressing Sasaki,Footnote 12 see [37], we first track how the scaling symmetry of KdV equation (14) acts on its standard matrix Lax pair; on the other hand, we reveal how these objects are phrased in the language of coverings.

2.1 B.1 The Sasaki Construction

Recall that the Korteweg–de Vries equation is

$$ \mathcal{E}= \{ u_{t} = - u_{xxx} - 6uu_{x} \} . $$
(14)

Consider the family of coverings \(\tau _{\eta }\colon \tilde{\mathcal{E}}_{\eta }\to \mathcal{E}\) over it,

$$\begin{aligned} v_{x} &= 2v\eta - \bigl(v^{2} + u\bigr), \end{aligned}$$
(24a)
$$\begin{aligned} v_{t} &= -8\eta ^{3} v + 4 \eta ^{2} \bigl(v^{2} + u\bigr) + 2 \eta (-2 v u + u _{x}) + 2 v^{2} u - 2 v u_{x} + 2 u^{2} + u_{xx}; \end{aligned}$$
(24b)

these formulas are obtained from the \(\mathfrak{sl}_{2}\)-valued zero-curvature representation (see [37]),

$$ \alpha _{\eta }= \begin{pmatrix} \eta & u \\ -1 & -\eta \end{pmatrix} { \mathrm{d}}x + \begin{pmatrix} - (4\eta ^{3} + 2\eta u + u_{x}) & - (u_{xx} + 2\eta u_{x} + 4\eta ^{2}u + 2u^{2}) \\ 4\eta ^{2} + 2u & 4\eta ^{3} + 2\eta u + u_{x} \end{pmatrix} {\mathrm{d}}t. $$

Let us recall that the parameter \(\eta \) cannot be removed from the zero-curvature representations \(\alpha _{\eta }\) by using gauge transformations. However, it can be eliminated by using a wider class of transformations. Namely, consider the scaling symmetry of Eq. (14),

$$ x \mapsto \eta x, \quad t \mapsto \eta ^{3} t, \quad u \mapsto \eta ^{-2}u, \qquad \eta \in \mathbb{R}. $$

Using it, one transforms the zero-curvature representation \(\alpha _{\eta }\) into

$$ \alpha '_{\eta }= \begin{pmatrix} 1 & \eta u \\ -\eta ^{-1} & -1 \end{pmatrix} {\mathrm{d}}x + \begin{pmatrix} - (4 + 2 u + u_{x}) & - \eta (u_{xx} + 2u_{x} + 4u + 2u^{2}) \\ \eta ^{-1}(4 + 2u) & 4 + 2u + u_{x} \end{pmatrix} { \mathrm{d}}t. $$

The parameter \(\eta \) in \(\alpha '_{\eta }\) is removable under the gauge transformation

$$ g = \begin{pmatrix} \eta ^{-1/2} & 0 \\ 0 & \eta ^{1/2} \end{pmatrix} \in C^{\infty }\bigl( \mathcal{E}^{\infty }, GL_{2}(\mathbb{C})\bigr), $$

that is, we have that \((\alpha '_{\eta })^{g} = \alpha '_{\eta } |_{\eta = 1} = \alpha _{\eta } |_{\eta = 1}\).

2.2 B.2 How the Elimination Works in Terms of the Structure Element

Let us now address the removability of parameter \(\eta \) in coverings (24a)–(24b) in terms of the formalism of Cartan’s structural element.

For a vector field

$$ X = a\otimes \frac{\partial }{\partial x} + b\otimes \frac{\partial }{ \partial t} + \omega _{\sigma }\otimes \frac{\partial }{\partial u_{ \sigma }} + \varphi \otimes \frac{\partial }{\partial v}, $$

the equation for evolution of Cartan’s structural element,

$$ \frac{\mathrm{d}}{\mathrm{d}\eta } U_{\eta }= [X, U_{\eta }]^{\text{FN}}, $$
(12)

splits into the system

$$\begin{aligned} -\frac{\mathrm{d}}{\mathrm{d}\eta } v_{x} =& \tilde{D}_{x} \varphi - \varphi \frac{\partial v_{x}}{\partial v} - \omega _{\sigma }\frac{ \partial v_{x}}{\partial u_{\sigma }} + b \biggl( \frac{\partial v_{x}}{ \partial u_{\sigma }}u_{\sigma t} + \frac{\partial v_{x}}{\partial v}v _{t} - \tilde{D}_{x}v_{t} \biggr) - v_{t}\frac{\partial b}{x} \\ &{}+ a \biggl( - \tilde{D}_{x}v_{x} + \frac{\partial v_{x}}{\partial u_{\sigma }}u_{\sigma x} + \frac{\partial v_{x}}{\partial v}v_{x} \biggr) - v_{x}\frac{\partial a}{\partial x}, \end{aligned}$$
(25a)
$$\begin{aligned} -\frac{\mathrm{d}}{\mathrm{d}\eta } v_{t} =& \tilde{D}_{t} \varphi - \varphi \frac{\partial v_{t}}{\partial v} - \omega _{\sigma }\frac{\partial v_{t}}{\partial u_{\sigma }} + b \biggl( \frac{\partial v_{t}}{\partial u_{\sigma }}u_{\sigma t} + \frac{\partial v_{t}}{ \partial v}v_{t} - \tilde{D}_{t}v_{t} \biggr) - v_{t} \frac{\partial b}{ \partial t} \\ &{}+ a \biggl( - \tilde{D}_{t} v_{x} + \frac{\partial v_{t}}{\partial u_{\sigma }}u_{\sigma x} + \frac{\partial v_{t}}{\partial v}v_{x} \biggr) - v_{x}\frac{\partial a}{\partial t}, \end{aligned}$$
(25b)
$$\begin{aligned} \omega _{\sigma x} =& \tilde{D}_{x} \omega _{\sigma }- u_{\sigma t}\frac{ \partial b}{\partial x} - u_{\sigma x}\frac{\partial a}{\partial x}, \end{aligned}$$
(25c)
$$\begin{aligned} \omega _{\sigma t} =& \tilde{D}_{t} \omega _{\sigma }- u_{\sigma t}\frac{ \partial b}{\partial t} - u_{\sigma x}\frac{\partial a}{\partial t}. \end{aligned}$$
(25d)

Suppose now that the vector field is vertical: \(X^{\mathrm{v}} = \omega ^{\mathrm{v}}_{\sigma }\otimes {\partial }/{\partial u_{\sigma }} + \varphi ^{\mathrm{v}}\otimes {\partial }/{\partial v}\). This simplifies system (25a)–(25d); it then becomes

$$\begin{aligned} -\frac{\mathrm{d}}{\mathrm{d}\eta } v_{x} =& \tilde{D}_{x} \varphi ^{\mathrm{v}} - \varphi ^{\mathrm{v}}\frac{\partial v_{x}}{ \partial v} - \omega ^{\mathrm{v}}_{\sigma }\frac{\partial v_{x}}{ \partial u_{\sigma }}, \end{aligned}$$
(26a)
$$\begin{aligned} -\frac{\mathrm{d}}{\mathrm{d}\eta } v_{t} =& \tilde{D}_{t} \varphi ^{\mathrm{v}} - \varphi ^{\mathrm{v}}\frac{\partial v_{t}}{ \partial v} - \omega ^{\mathrm{v}}_{\sigma }\frac{\partial v_{t}}{ \partial u_{\sigma }}, \end{aligned}$$
(26b)
$$\begin{aligned} \omega ^{\mathrm{v}}_{\sigma x} =& \tilde{D}_{x} \omega ^{ \mathrm{v}}_{\sigma }, \end{aligned}$$
(26c)
$$\begin{aligned} \omega ^{\mathrm{v}}_{\sigma t} =& \tilde{D}_{t} \omega ^{ \mathrm{v}}_{\sigma }. \end{aligned}$$
(26d)

Let us use the Ansatz

$$ \omega ^{\mathrm{v}} = \omega - au_{x} - bu_{t}, \qquad \varphi ^{ \mathrm{v}} = \varphi - av_{x} -bu_{t}, $$

assuming that \(a=a(x, t, \eta )\), \(b=b(x, t, \eta )\), \(\varphi = \varphi (\eta , u, v)\), and \(\omega = \omega (\eta , u, v, u_{x}, u _{xx})\). By construction, the unknowns \(\omega ^{\mathrm{v}}\) and \(\varphi ^{\mathrm{v}}\) satisfy system (26a)–(26d). Using the analytic software Jets [69] and Crack [58], we find the solution

$$\begin{aligned} a =& 24c_{4}t\eta ^{3} + 2c_{4}x\eta + \frac{1}{\eta }(c_{6}+x), \\ b =& 6c_{4}t\eta + \frac{1}{\eta }(-c_{7} + 3t), \\ \omega =& 4c_{4}\eta ^{3} - 4c_{4}u\eta + u_{x}c_{4} + \frac{1}{ \eta }\biggl(- \frac{1}{2}u_{x}c_{3} - 2u\biggr) + \frac{1}{2\eta ^{2}}u_{x}, \\ \varphi =& 2c_{4}\eta ^{2} - c_{4}v^{2} - c_{3}v - c_{4}u + \frac{c _{3}}{2\eta } \bigl(v^{2} + u\bigr) - \frac{1}{2\eta ^{2}} \bigl(v^{2} + u \bigr), \end{aligned}$$

which contains four arbitrary constants \(c_{3}\), \(c_{4}\), \(c_{6}\), and \(c _{7}\).

Let us set \(c_{3}=0\), \(c_{4}=-1/(2\eta ^{2})\) at \(\eta \neq 0\), \(c_{6}=0\), and \(c_{7}=0\). This determines the solution which corresponds to the lift of Galilean symmetry of (14):

$$ X_{2} = -2\eta ( 6t {\partial }/{\partial x} + {\partial }/{ \partial u} + \cdots ) - {\partial }/{\partial v}. $$

On the other hand, set \(c_{3}=1/\eta \) if \(\eta \neq 0\) and let \(c_{4}=0\), \(c_{6}=0\), and \(c_{7}=0\). This yields the solution which corresponds to the lift of scaling symmetry of (14); namely, we have that

$$ X_{1} = \eta ^{-2}( - x {\partial }/{ \partial x} - 3t {\partial }/ {\partial t} + 2u {\partial }/{\partial u} + \cdots + v {\partial }/{\partial v} ). $$
(27)

The integral curves of vector field (27) encode the transformation

$$ x \mapsto \eta x, \qquad t \mapsto \eta ^{3} t, \qquad u \mapsto \eta ^{-2} u, \qquad v \mapsto \eta ^{-1} v. $$
(28)

Its action on the covering \(\tau _{\eta }\) in (24a)–(24b) results in the covering \(\tau ' = \tau _{\eta } |_{\eta =1}\), which is described by the formulas

$$\begin{aligned} v_{x} &= 2v - \bigl(v^{2} + u\bigr), \\ v_{t} &= -8 v + 4 v^{2} + 4u -4 v u + 2u_{x} + 2 v^{2} u - 2 v u_{x} + 2 u^{2} + u_{xx}. \end{aligned}$$

It is readily seen that the covering \(\tau '\) is the image of zero-curvature representation \((\alpha '_{\eta })^{g}\) under a swapping of representations for the Lie algebra at hand. This is shown in the following diagram:

(29)

We conclude that the problem of finding transformations (which are possibly not gauge) that eliminate the parameter in a given family of zero-curvature representations can be approached via a solution of Eq. (12) in the family of coverings which are the \((\rho \rightleftarrows \boldsymbol{\varrho })\)-avatars of those zero-curvature representations.

2.3 B.3 Overview: Taxonomy of the Parameters

Depending on their elimination scenario, “removable” parameters in zero-curvature representations are classified as follows:

  1. (1)

    There are parameters which are truly removable under the action of smooth families of gauge transformations (see [22, 23] by Marvan and [24, 25] by Sakovich).

  2. (2)

    There could be zero-curvature representations \(\alpha _{\lambda }\) which are (piecewise-)smooth in the parameter \(\lambda \in \mathcal{I}\subseteq \mathbb{C}\) but such that the families \(S_{ \lambda }\) of gauge transformations removing the parameter are not smooth at all points \(\lambda \in \mathcal{J}\subseteq \mathcal{I}\), where the set \(\mathcal{J}\) is

    1. (a)

      finite,

    2. (b)

      countable,

    3. (c)

      everywhere dense in ℐ but not amounting to it, or

    4. (d)

      equal to the entire set ℐ of admissible values of the parameter \(\lambda \).

    This analytic curiosity would be the threshold limit of the preceding case.

  3. (3)

    Next, there are parameters which cannot be removed by using gauge transformations but which indicate the presence of conserved currents in zero-curvature representations and the reducibility of such representationsFootnote 13 (see [70] and [48, §12]).

  4. (4)

    There are parameters which vanish under the action of those symmetries of the underlying differential equation which cannot be lifted to the covering Maurer–Cartan equation (see [37, 71]).

  5. (5)

    Finally, there are parameters which can be eliminated by the same procedure as in the preceding case but by using shadows of nonlocal symmetries in some auxiliary covering over the equation at hand (namely, not in the covering which grasps the ZCR geometry but in an extension of the equation’s geometry by a set of “nonlocalities”), see [7274].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, A.V., Krutov, A.O. On the (Non)Removability of Spectral Parameters in \(\mathbb{Z}_{2}\)-Graded Zero-Curvature Representations and Its Applications. Acta Appl Math 160, 129–167 (2019). https://doi.org/10.1007/s10440-018-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0198-6

Keywords

Mathematics Subject Classification (2010)

Navigation