Skip to main content
Log in

A New Fourier Truncated Regularization Method for Semilinear Backward Parabolic Problems

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study the backward problem for non-linear (semilinear) parabolic partial differential equations in Hilbert spaces. The problem is severely ill-posed in the sense of Hadamard. Under a weak a priori assumption on the exact solution, we propose a new Fourier truncated regularization method for stabilising the ill-posed problem. In comparison with previous studies on solving the nonlinear backward problem, our method shows a significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussetila, N., Rebbani, F.: A modified quasi-reversibility method for a class of ill-posed Cauchy problems. Georgian Math. J. 14(4), 627–642 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Cheng, J., Liu, J.J.: A quasi Tikhonov regularization for a two-dimensional backward heat problem by a fundamental solution. Inverse Probl. 24(6), 065012 (2008). 18 pp.

    Article  MathSciNet  MATH  Google Scholar 

  3. Clark, G., Oppenheimer, C.: Quasireversibility methods for non-well-posed problem. Electron. J. Differ. Equ. 1994, 08 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301, 419–426 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fernandez-CARA, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5, 4–6 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Fury, M.A.: Modified quasi-reversibility method for nonautonomous semilinear problems. In: Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations. Electron. J. Differ. Equ. Conf., vol. 20, pp. 65–78. Texas State Univ., San Marcos (2013)

    Google Scholar 

  7. Hao, D.N., Duc, N.V., Lesnic, D.: Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J. Appl. Math. 75(2), 291–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hetrick, B.M.C., Hughes, R.J.: Continuous dependence on modeling for nonlinear ill-posed problems. J. Math. Anal. Appl. 349(2), 420–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johansson, B.T., Lesnic, D., Reeve, T.: A comparative study on applying the method of fundamental solutions to the backward heat conduction problem. Math. Comput. Model. 54(1–2), 403–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klibanov, M.V.: Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math. 94, 46–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klibanov, M.V.: Carleman weight functions for solving ill-posed Cauchy problems for quasilinear PDEs. Inverse Probl. 31, 125007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klibanov, M.V., Timonov, A.: Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2005)

    MATH  Google Scholar 

  13. Klibanov, M.V., Koshev, N.A., Li, J., Yagola, A.G.: Numerical solution of an ill posed Cauchy problem for a quasilinear parabolic equation using a Carleman weight function (2016). arXiv:1603.0048

  14. Klibanov, M.V., Kuzhuget, A.V., Golubnichij, K.V.: An ill-posed problem for the Black-Scholes equation for a profitable forecast of prices of stock options on real market data. Inverse Probl. 32, 015010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J.: Continuous dependence for a backward parabolic problem. J. Partial Differ. Equ. 16(3), 211–222 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Nair, M.T., Pereverzev, S.V., Tautenhahn, U.: Regularization in Hilbert scales under general smoothing conditions. Inverse Probl. 21(6), 1851–1869 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nam, P.T.: An approximate solution for nonlinear backward parabolic equations. J. Math. Anal. Appl. 367(2), 337–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oanh, N.T.N.: A splitting method for a backward parabolic equation with time-dependent coefficients. Comput. Math. Appl. 65(1), 17–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tuan, N.H.: Stability estimates for a class of semi-linear ill-posed problems. Nonlinear Anal., Real World Appl. 14(2), 1203–1215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tuan, N.H., Quan, P.H.: Some extended results on a nonlinear ill-posed heat equation and remarks on a general case of nonlinear terms. Nonlinear Anal., Real World Appl. 12(6), 2973–2984 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Tuan, N.H., Trong, D.D.: Sharp estimates for approximations to a nonlinear backward heat equation. Nonlinear Anal. 73(11), 3479– (2010). 3–488

    Article  MathSciNet  MATH  Google Scholar 

  22. Tuan, N.H., Trong, D.D.: A nonlinear parabolic equation backward in time: regularization with new error estimates. Nonlinear Anal. 73(6), 1842–1852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tuan, N.H., Trong, D.D., Quan, P.H.: On a backward Cauchy problem associated with continuous spectrum operator. Nonlinear Anal. 73(7), 1966–1972 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yildiz, B., Yetiskin, H., Sever, A.: A stability estimate on the regularized solution of the backward heat equation. Appl. Math. Comput. 135(2–3), 561–567 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The third author extends his appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Kirane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huy, T.N., Kirane, M., Samet, B. et al. A New Fourier Truncated Regularization Method for Semilinear Backward Parabolic Problems. Acta Appl Math 148, 143–155 (2017). https://doi.org/10.1007/s10440-016-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0082-1

Keywords

Mathematics Subject Classification

Navigation