Skip to main content
Log in

Quadratic Hamilton–Poisson Systems in Three Dimensions: Equivalence, Stability, and Integration

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Quadratic Hamilton–Poisson systems on three-dimensional Lie–Poisson spaces are considered. The homogeneous (positive) semidefinite systems are classified up to linear isomorphism; an exhaustive and nonredundant list of 23 normal forms is exhibited. For each normal form, the stability nature of the equilibria is determined. Each normal form is explicitly integrated, with the exception of three families of systems. Based on the analysis of the normal forms, some simple invariants are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin-Cummings, Reading (1978)

    MATH  Google Scholar 

  2. Adams, R.M., Biggs, R., Remsing, C.C.: Single-input control systems on the Euclidean group \(\mathsf{SE}(2)\). Eur. J. Pure Appl. Math. 5(1), 1–15 (2012)

    MathSciNet  Google Scholar 

  3. Adams, R.M., Biggs, R., Remsing, C.C.: On some quadratic Hamilton–Poisson systems. Appl. Sci. 15, 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Adams, R.M., Biggs, R., Remsing, C.C.: Two-input control systems on the Euclidean group \(\mathsf{SE}(2)\). ESAIM Control Optim. Calc. Var. 19(4), 947–975 (2013). doi:10.1051/cocv/2012040

    Article  MathSciNet  MATH  Google Scholar 

  5. Adams, R.M., Biggs, R., Remsing, C.C.: Quadratic Hamilton–Poisson systems on \(\mathfrak{so}^{*}_{-}(3)\): classifications and integration. In: Mladenov, I.M., Ludu, A., Yoshioka, A. (eds.) Proceedings of the 15th International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 2013, pp. 55–66. Avangard Prima, Sophia (2014)

    Google Scholar 

  6. Adams, R.M., Biggs, R., Holderbaum, W., Remsing, C.C.: On the stability and integration of Hamilton–Poisson systems on \(\mathfrak{so}(3)^{*}_{-}\). Rend. Mat. Appl. In press

  7. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  8. Armitage, J.V., Eberlein, W.F.: Elliptic Functions. Cambridge University Press, Cambridge (2006). doi:10.1017/CBO9780511617867

    Book  MATH  Google Scholar 

  9. Aron, A., Pop, C.: Quadratic and homogeneous Hamilton–Poisson systems on the 13th Lie algebra from Bianchi’s classification. In: Proceedings of the International Conference of Differential Geometry and Dynamical Systems, Bucharest, Romania, 2009, vol. 17, pp. 12–20. Geom. Balkan Press, Bucharest (2010)

    Google Scholar 

  10. Aron, A., Dăniasă, C., Puta, M.: Quadratic and homogeneous Hamilton–Poisson system on \((\mathrm{so}(3))\). Int. J. Geom. Methods Mod. Phys. 4(7), 1173–1186 (2007). doi:10.1142/S0219887807002491

    Article  MathSciNet  MATH  Google Scholar 

  11. Aron, A., Pop, C., Puta, M.: Some remarks on \((\mathrm{sl}(2,\mathbb{R}))\) and Kahan’s integrator. An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. 53(suppl. 1), 49–60 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Aron, A., Craioveanu, M., Pop, C., Puta, M.: Quadratic and homogeneous Hamilton–Poisson systems on \(A_{3,6,-1}^{*}\). Balk. J. Geom. Appl. 15(1), 1–7 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Barrett, D.I., Biggs, R., Remsing, C.C.: Optimal control of drift-free invariant control systems on the group of motions of the Minkowski plane. In: Proceedings of the 13th European Control Conference, Strasbourg, France, 2014, pp. 2466–2471. European Control Association (2014)

  14. Barrett, D.I., Biggs, R., Remsing, C.C.: Quadratic Hamilton–Poisson systems on \(\mathfrak{se}(1,1)^{*}_{-}\): the homogeneous case. Int. J. Geom. Methods Mod. Phys. 12(1), 1550011, 17 pp. (2015). doi:10.1142/S0219887815500115

    Article  MathSciNet  MATH  Google Scholar 

  15. Barrett, D.I., Biggs, R., Remsing, C.C.: Quadratic Hamilton–Poisson systems on \(\mathfrak{se} (1,1)^{*}_{-}\): the inhomogeneous case. Preprint

  16. Bartlett, C.E., Biggs, R., Remsing, C.C.: A few remarks on quadratic Hamilton–Poisson systems on the Heisenberg Lie–Poisson space. Acta Math. Univ. Comen. In press

  17. Biggs, J., Holderbaum, W.: Integrable quadratic Hamiltonians on the Euclidean group of motions. J. Dyn. Control Syst. 16(3), 301–317 (2010). doi:10.1007/s10883-010-9094-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Biggs, R., Remsing, C.C.: On the equivalence of cost-extended control systems on Lie groups. In: Karimi, H.R. (ed.) Recent Researches in Automatic Control, Systems Science and Communications, Porto, Portugal, 2012, pp. 60–65. WSEAS Press (2012)

  19. Biggs, R., Remsing, C.: Cost-extended control systems on Lie groups. Mediterr. J. Math. 11(1), 193–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Biggs, R., Remsing, C.C.: A classification of quadratic Hamilton–Poisson systems in three dimensions. In: Mladenov, I.M., Ludu, A., Yoshioka, A. (eds.) Proceedings of the 15th International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 2013, pp. 67–78. Avangard Prima, Sophia (2014)

    Google Scholar 

  21. Biggs, R., Remsing, C.C.: Equivalence of control systems on the pseudo-orthogonal group \(\mathsf{SO}(2,1)_{0}\). An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 24(2), 45–65 (2016). doi:10.1515/auom-2016-0027. http://www.anstuocmath.ro/mathematics//ANALE2016VOL2/Biggs_R.__Remsing_C.C..pdf

    Google Scholar 

  22. Craioveanu, M., Pop, C., Aron, A., Petrişor, C.: An optimal control problem on the special Euclidean group \({\mathsf{SE}}(3, \mathbb{R})\). In: International Conference of Differential Geometry and Dynamical Systems, Bucharest, Romania, 2009, vol. 17, pp. 68–78. Geom. Balkan Press, Bucharest (2010)

    Google Scholar 

  23. Dăniasă, C., Gîrban, A., Tudoran, R.M.: New aspects on the geometry and dynamics of quadratic Hamiltonian systems on \((\mathfrak{so}(3))\). Int. J. Geom. Methods Mod. Phys. 8(8), 1695–1721 (2011). doi:10.1142/S0219887811005889

    Article  MathSciNet  MATH  Google Scholar 

  24. Harvey, A.: Automorphisms of the Bianchi model Lie groups. J. Math. Phys. 20(2), 251–253 (1979). doi:10.1063/1.524073

    Article  MathSciNet  Google Scholar 

  25. Holm, D.D.: Geometric Mechanics I: Dynamics and Symmetry. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  26. Holm, D.D.: Geometric Mechanics II: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  27. Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123(1–2), 1–116 (1985). doi:10.1016/0370-1573(85)90028-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  29. Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: The Bianchi classification in the Schücking-Behr approach. Gen. Relativ. Gravit. 35(3), 475–489 (2003). doi:10.1023/A:1022382202778

    Article  MATH  Google Scholar 

  30. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures. Springer, Heidelberg (2013). doi:10.1007/978-3-642-31090-4

    Book  MATH  Google Scholar 

  31. Libermann, P., Marle, C.M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987). doi:10.1007/978-94-009-3807-6

    Book  MATH  Google Scholar 

  32. MacCallum, M.A.H.: On the classification of the real four-dimensional Lie algebras. In: On Einstein’s Path, New York, 1996, pp. 299–317. Springer, New York (1999)

    Chapter  Google Scholar 

  33. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  34. Monroy-Pérez, F., Anzaldo-Meneses, A.: Optimal control on the Heisenberg group. J. Dyn. Control Syst. 5(4), 473–499 (1999). doi:10.1023/A:1021787121457

    Article  MathSciNet  MATH  Google Scholar 

  35. Mubarakzjanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učebn. Zaved., Mat. 1963(no 1 (32)), 114–123 (1963)

    MathSciNet  Google Scholar 

  36. Ortega, J.P., Planas-Bielsa, V., Ratiu, T.S.: Asymptotic and Lyapunov stability of constrained and Poisson equilibria. J. Differ. Equ. 214(1), 92–127 (2005). doi:10.1016/j.jde.2004.09.016

    Article  MathSciNet  MATH  Google Scholar 

  37. Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17(6), 986–994 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Patrick, G.W., Roberts, M., Wulff, C.: Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods. Arch. Ration. Mech. Anal. 174(3), 301–344 (2004). doi:10.1007/s00205-004-0322-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Popovych, R.O., Boyko, V.M., Nesterenko, M.O., Lutfullin, M.W.: Realizations of real low-dimensional Lie algebras. J. Phys. A 36(26), 7337–7360 (2003). doi:10.1088/0305-4470/36/26/309

    Article  MathSciNet  MATH  Google Scholar 

  40. Puta, M.: Hamiltonian Mechanical Systems and Geometric Quantization. Kluwer Academic, Dordrecht (1993). doi:10.1007/978-94-011-1992-4

    Book  MATH  Google Scholar 

  41. Puta, M., Caşu, I.: Geometrical aspects in the rigid body dynamics with three quadratic controls. In: Mladenov, I.M., Naber, G.L. (eds.) Proceedings of the First International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 1999, pp. 209–224. Coral Press Sci. Publ., Sofia (2000)

    Google Scholar 

  42. Puta, M., Butur, M., Goldenthal, G., Moş, I., Rujescu, C.: Maxwell-Bloch equations with a quadratic control about \(Ox_{1}\) axis. In: Mladenov, I.M., Naber, G.L. (eds.) Proceedings of the 2nd International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 2000, pp. 280–286. Coral Press Sci. Publ., Sofia (2001)

    Google Scholar 

  43. Remsing, C.C.: Optimal control and integrability on Lie groups. An. Univ. Vest. Timiş., Ser. Mat.-Inform. 49(2), 101–118 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Sachkov, Y.L.: Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14(2), 169–234 (2008). doi:10.1007/s10883-008-9039-7

    Article  MathSciNet  MATH  Google Scholar 

  45. Testa, F.J.: Congruence diagonalization and Lie groups. SIAM J. Appl. Math. 28, 54–59 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tudoran, R.M.: On a class of three-dimensional quadratic Hamiltonian systems. Appl. Math. Lett. 25(9), 1214–1216 (2012). doi:10.1016/j.aml.2012.02.048

    Article  MathSciNet  MATH  Google Scholar 

  47. Tudoran, R.M.: The free rigid body dynamics: generalized versus classic. J. Math. Phys. 54(7), 072704, 10 (2013). doi:10.1063/1.4816550

    Article  MathSciNet  MATH  Google Scholar 

  48. Tudoran, R.M., Tudoran, R.A.: On a large class of three-dimensional Hamiltonian systems. J. Math. Phys. 50(1), 012703, 9 (2009). doi:10.1063/1.3068405

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Biggs.

Additional information

This research was supported in part by the European Unions Seventh Framework Programme (FP7/2007-2013, grant no. 317721). Rory Biggs acknowledges the financial support of the National Research Foundation (DAAD-NRF) and Rhodes University, as well as the Claude Leon Foundation, towards this research.

Appendices

Appendix A: Taxonomy of Systems

Table 5 Taxonomy of 3D systems, semisimple algebras
Table 6 Taxonomy of 3D systems, solvable algebras

Appendix B: Selected Proofs for Stability and Integration

2.1 B.1 Stability and Integration of \(\mathsf{P}(2)\)

2.1.1 B.1.1 Stability of Equilibria

The equilibrium states are \(\mathsf{e}_{1}^{\eta ,\mu }=(0,\eta , \mu )\neq 0\) and \(\mathsf{e}_{2}^{\mu }=(\mu ,0,-\mu )\). The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\eta ,\mu }\) has eigenvalues \(\{0,0,-2\eta \}\). Hence, the states \(\mathsf{e}_{1} ^{\eta ,\mu }\), \(\eta <0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{1}^{\eta ,\mu }\), \(\eta >0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}C^{2}+\lambda_{2}F\), where \(F(p)=p_{1}^{2}\geq 0\). Now \(\vec{H}[F](p)=-4p_{1}^{2}p_{2}\leq 0 \) for \(p\) in a sufficiently small neighbourhood of \(\mathsf{e}_{1}^{\eta ,\mu }\). We have \(d H_{\lambda }(\mathsf{e} _{1}^{\eta ,\mu })= [{ 2 \mu \lambda_{0}\ \ 2 \eta \lambda_{0}\ \ 2 \mu ( \lambda_{0}+\lambda _{1} )} ] \) and

$$\begin{aligned} d^{2}H_{\lambda }\bigl(\mathsf{e}_{1}^{\eta ,\mu } \bigr)= \left[\textstyle\begin{array}{c@{\quad}c@{\quad}c} 2 \lambda_{0}+2 \lambda_{2} & 0 & 2 \lambda_{0} \\ 0 & 2 \lambda_{0} & 0 \\ 2 \lambda_{0} & 0 & 2 \lambda_{0}+2 \lambda_{1} \end{array}\displaystyle \right] . \end{aligned}$$

Suppose \(\mu =0\) and let \(\lambda_{0}=0\), \(\lambda_{1}=\lambda _{2}=1\). Then \(d H_{\lambda }(\mathsf{e}_{1}^{\eta ,\mu })=0\). As \(d C^{2}= [{ 0\ \ 2 \eta \ \ 0 }] \), if follows that \(d^{2}H_{\lambda }(\mathsf{e}_{1}^{\eta ,\mu })\) is positive definite when restricted to \(W=\ker d C^{2}(\mathsf{e} _{1}^{\eta ,\mu })\). On the other hand suppose \(\mu \neq 0\) and let \(\lambda_{0}=\lambda_{1}=0\), \(\lambda_{2}=1\). Then \(d H_{ \lambda }(\mathsf{e}_{1}^{\eta ,\mu })=0\) and \(d^{2}H_{\lambda }( \mathsf{e}_{1}^{\eta ,\mu })=\operatorname{diag}(2,0,0)\). Also, \(d H(\mathsf{e}_{1}^{\eta ,\mu })= [{ 2 \mu \ \ 2\eta \ \ 2 \mu} ] \) and \(d C^{2}(\mathsf{e}_{1}^{\eta ,\mu })= [{ 0\ \ 0\ \ \mu }] \). Hence \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\eta ,\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\eta ,\mu })\cap \ker d C^{2}(\mathsf{e}_{1}^{\eta ,\mu })\). Consequently, the states \(\mathsf{e}_{1}^{\eta ,\mu }\), \(\eta >0 \) are weakly asymptotically stable.

Next, consider the states \(\mathsf{e}_{1}^{0,\mu }\). We have that \(p(t)=(\frac{-2 \mu }{1+4 \mu^{2}t^{2}},\frac{4\mu^{2}t}{1+4\mu^{2}t ^{2}},\mu )\) is a maximal integral curve (defined over ℝ). As \(\lim_{t\to -\infty }p(t)=\mathsf{e}_{1}^{0,\mu }\), any neighbourhood of \(\mathsf{e}_{1}^{0,\mu }\) contains a point \(p(t_{0})\) for some \(t_{0}<0\). Now \(\|p(0)-\mathsf{e}_{1}^{0, \mu }\|=2|\mu |\). (Here \(\|p\|\) denotes the norm \(\|p\|=\sqrt{p _{1}^{2}+p_{2}^{2}+p_{3}^{2}}\).) Let \(U=\{p : \|p\|<|\mu |\}\). Then for any neighbourhood \(N\subset U\) there exists \(t_{0}<0\) such that \(p(t_{0})\in N\), but \(p(0)\notin U\). Thus the states \(\mathsf{e}_{1}^{0,\mu }\) are unstable.

Lastly, we consider the states \(\mathsf{e}_{2}^{\mu }\), \(\mu \neq 0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}C^{2}\). We have \(d H_{\lambda }(\mathsf{e}_{2}^{\mu })= [{ 0\ \ 0\ \ -2 \mu \lambda_{1} }] \) and

$$\begin{aligned} d^{2}H_{\lambda }\bigl(\mathsf{e}_{2}^{\mu } \bigr)= \left[\textstyle\begin{array}{c@{\quad}c@{\quad}c} 2 \lambda_{0} & 0 & 2 \lambda_{0} \\ 0 & 2 \lambda_{0} & 0 \\ 2 \lambda_{0} & 0 & 2 \lambda_{0}+2 \lambda_{1} \end{array}\displaystyle \right] . \end{aligned}$$

Suppose \(\mu =0\). Let \(\lambda_{0}=\lambda_{1}=1\). Then \(d H_{\lambda }(\mathsf{e}_{2}^{\mu })=0\) and \(d^{2}H_{\lambda }(\mathsf{e}_{2}^{\mu })\) is positive definite. On the other hand, suppose \(\mu \neq 0\). Let \(\lambda_{0}=1\) and \(\lambda_{1}=0\). We have \(d C^{2}(\mathsf{e}_{2}^{\mu })= [{ 0\ \ 0\ \ -2 \mu }] \). Hence \(d H_{\lambda }(\mathsf{e}_{2}^{\mu })=0\) and \(d^{2}H_{\lambda }(\mathsf{e}_{2}^{\mu })\) is positive definite when restricted to \(W=\ker d C^{2}(\mathsf{e}_{2}^{\mu })\). Thus the states \(\mathsf{e}_{2}^{\mu }\) are stable.

2.1.2 B.1.2 Integration

Suppose \(p(\cdot ):(-\varepsilon ,\varepsilon )\to (\mathfrak{g} _{2.1}\oplus \mathfrak{g}_{1})^{*}\) is a nonconstant integral curve of \(\vec{H}\). Let \(h_{0}=H(p(0))\) and \(c_{0}=p_{3}(0)\). We claim the following.

  1. (a)

    If \(c_{0}^{2}>h_{0}>0\), then there exists \(t_{0}\in \mathbb{R}\) such that \(p(t)=\bar{p}(t+t_{0})\) for \(t\in (- \varepsilon ,\varepsilon )\), where

    $$\begin{aligned} \left\{ \begin{aligned} \bar{p}_{1}(t) &=-\frac{\delta^{2}}{ c_{0}-\sqrt{h_{0}}\cos (2 \delta t) } \\ \bar{p}_{2}(t)&=\frac{\delta \sqrt{h_{0}} \sin (2 \delta t) }{ c_{0}-\sqrt{h_{0}}\cos (2 \delta t)} \\ \bar{p}_{3}(t)&=c _{0} \end{aligned} \right . \quad \delta = \sqrt{c_{0}^{2}-h_{0}}. \end{aligned}$$
  2. (b)

    If \(c_{0}^{2}=h_{0}>0\), then there exists \(t_{0}\in \mathbb{R}\) such that \(p(t)=\bar{p}(t+t_{0})\) for \(t\in (- \varepsilon ,\varepsilon )\), where

    $$\begin{aligned} \left\{ \begin{aligned} \bar{p}_{1}(t) &=-\frac{2 c_{0}}{1+4 c_{0}^{2} t^{2}} \\ \bar{p}_{2}(t)&=\frac{4 c_{0}^{2} t}{1+4 c_{0}^{2} t^{2}} \\ \bar{p}_{3}(t)&=c_{0}. \end{aligned} \right . \end{aligned}$$
  3. (c)

    If \(c_{0}^{2}< h_{0}\), then there exists \(t_{0}\in \mathbb{R}\) and \(\sigma \in \{-1,1\}\) such that \(p(t)=\bar{p}(t+t _{0})\) for \(t\in (-\varepsilon ,\varepsilon )\), where

    $$\begin{aligned} \left\{ \begin{aligned} \bar{p}_{1}(t) &=\frac{\sigma \operatorname{sgn}(c_{0}) \delta ^{2}}{\sigma |c_{0}|-\sqrt{h_{0}} \cosh (2 \delta t) } \\ \bar{p} _{2}(t)&=\frac{-\sqrt{h_{0} } \delta \sinh (2 \delta t) }{ \sigma |c_{0}|-\sqrt{h_{0}} \cosh (2 \delta t) } \\ \bar{p}_{3}(t)&=c _{0} \end{aligned} \right . \quad \delta = \sqrt{h_{0}-c_{0}^{2}}. \end{aligned}$$

Verification that, in each case, \(\bar{p}(\cdot )\) is a maximal integral curve defined over ℝ is standard. Suppose \(c_{0}^{2}>h_{0}>0\). We have \(p_{3}(\cdot )=c_{0}\) and so \(-\sqrt{h_{0}}-c_{0}\leq p_{1}(0)\leq \sqrt{h_{0}}-c_{0}\). Now \(\bar{p}_{1}(0)=-\sqrt{h_{0}}-c_{0}\) and \(\bar{p}_{1}(\tfrac{ \pi }{2\delta })=\sqrt{h_{0}}-c_{0}\). Thus there exists \(t_{1} \in [0,\tfrac{\pi }{2\delta }]\) such that \(p_{1}(0)=\bar{p}_{1}(t _{1})\). Then, as \(H\) is a constant of motion, we get \(p_{2}(0)= \pm \bar{p}_{2}(t_{1})\). However, \(\bar{p}_{1}(-t_{1})=\bar{p}_{1}(t _{1})\), \(\bar{p}_{2}(-t_{1})=-\bar{p}_{2}(t_{1})\) and \(\bar{p} _{3}(-t_{1})=\bar{p}_{1}(t_{1})=c_{0}\). Thus, for \(t_{0}=t_{1}\) or \(t_{0}=-t_{1}\), we have that \(\bar{p}(t_{0})=p(0)\). Consequently \(t\mapsto p(t)\) and \(t\mapsto \bar{p}(t+t_{0})\) solve the same Cauchy problem and therefore are identical.

Suppose \(c_{0}^{2}=h_{0}>0\). Again, \(-\sqrt{h_{0}}-c_{0}\leq p _{1}(0)\leq \sqrt{h_{0}}-c_{0}\), i.e., \(-|c_{0}|-c_{0}\leq p_{1}(0) \leq |c_{0}|-c_{0}\). (If \(c_{0}>0\), then \(-2c_{0}\leq p_{1}(0) \leq 0\); if \(c_{0}<0\), then \(0\leq p_{1}(0)\leq -2c_{0}\).) Note that \(p_{1}(0)\neq 0\), as \(p(\cdot )\) is assumed nonconstant. Now \(\bar{p}_{1}(0)=-2c_{0}\) and \(\lim_{t\to \infty }\bar{p}_{1}(t)=0\). Thus there exists \(t_{1} \in \mathbb{R}\) such that \(\bar{p}_{1}(t_{1})=p_{1}(0)\). Likewise, for \(t_{0}=t_{1}\) or \(t_{0}=-t_{1}\), we get \(p(0)=\bar{p}(t _{0})\). Hence \(t\mapsto p(t)\) and \(t\mapsto \bar{p}(t+t_{0})\) solve the same Cauchy problem and therefore are identical.

Lastly, suppose \(c_{0}^{2}< h_{0}\). Let \(\sigma = \operatorname{sgn}(p_{1}(0))\neq 0\). We have \(-\sqrt{h_{0}}-c_{0} \leq p_{1}(0)\leq \sqrt{h_{0}}-c_{0}\). Also \(\bar{p}_{1}(0)=- \sigma \operatorname{sgn}(c_{0}) \sqrt{h_{0}}-c_{0}\) and \(\lim_{t\to \infty } \bar{p}_{1}(t)=0\). Thus there exists \(t_{1}\in \mathbb{R}\) such that \(\bar{p}_{1}(t_{1})=p_{1}(0)\). Consequently, either \(\bar{p}(t+t_{1})=p(t)\) or \(\bar{p}(t-t _{1})=p(t)\).

2.2 B.2 Stability of Equilibria for \(\mathsf{P}(5)\)

The equilibrium states are \(\mathsf{e}^{\mu }=(0,0,\mu )\). The linearization of the system at \(\mathsf{e}^{\mu }\) has eigenvalues \(\{0,2\mu ,2\mu \}\). Hence, the states \(\mathsf{e}^{\mu }\), \(\mu >0\) are spectrally unstable. We consider the states \(\mathsf{e}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0}H+ \lambda_{1}F\), where \(F(p)=p_{1}^{2}+p_{2}^{2}\geq 0\). Let \(\lambda_{0}=0\) and \(\lambda_{1}=1\). Now \(\vec{H}[F](p)=4 (p _{1}^{2}+p_{2}^{2}) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}^{\mu }\). We have \(d H_{\lambda }(\mathsf{e}^{\mu })=0 \) and \(d^{2}H_{\lambda }(\mathsf{e}^{\mu })=\operatorname{diag}(2,2,0)\). As \(d H(\mathsf{e}^{\mu })= [{ 0\ \ 0 \ \ 2\mu }] \), if follows that \(d^{2}H_{\lambda }(\mathsf{e}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}^{\mu })\). Hence the states \(\mathsf{e}^{\mu }\), \(\mu <0\) are weakly asymptotically stable. The state \(\mathsf{e}^{0}\) is stable as \(H^{-1}(0)=\{0 \}\). However, to prove weak asymptotic stability we consider \(H_{\lambda }=\lambda_{0} H+\lambda_{1}F\), where \(F(p)=(1+p_{3})(p _{1}^{2}+p_{2}^{2}+p_{3}^{2})\). Let \(\lambda_{0}=0\) and \(\lambda_{1}=1\). Now \(F(p)\geq 0\) and \(\vec{H}[F](p)=-2 ( p _{1}^{2}+p_{2}^{2} ) ( p_{1}^{2}+p_{2}^{2}+p_{3}^{2} ) \leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}^{0}\). We have \(d H_{\lambda }(\mathsf{e}^{0})=0\) and \(d^{2}H_{\lambda }( \mathsf{e}^{\mu })=\operatorname{diag}(2,2,2)\). Hence the state \(\mathsf{e}^{0}\) is weakly asymptotically stable.

2.3 B.3 Stability of Equilibria for \(\mathsf{Np}(2)\)

We distinguish between the cases (a) \(\delta =0\), (b) \(0<\delta < \tfrac{1}{4}\), (c) \(\delta =\tfrac{1}{4}\), and (d) \(\delta > \tfrac{1}{4}\). We treat here only the cases (b) and (c); the other cases follow similarly.

(b) We have the following equilibrium states

$$\begin{gathered} \mathsf{e}_{1}^{\nu }=(0,0,\nu ),\qquad \mathsf{e}_{2}^{\nu }= \bigl(\nu , \tfrac{1}{2} (1+\sqrt{1-4 \delta })\nu ,0\bigr),\qquad \mathsf{e}_{3}^{ \mu }=\bigl(\mu ,\tfrac{1}{2} (1-\sqrt{1-4 \delta })\mu ,0\bigr). \end{gathered}$$

The linearization of \(\vec{H}\) has eigenvalues \(\{0, 2 \nu , 2 \nu \}\) at \(\mathsf{e}_{1}^{\nu }\), whereas at \(\mathsf{e}_{2} ^{\nu }\) it has eigenvalues \(\{ 0,-2 (1-4 \delta )^{1/4} \nu ,2 (1-4 \delta )^{1/4} \nu \} \). Therefore the states \(\mathsf{e} _{1}^{\nu }\), \(\nu >0\) and \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\) are spectrally unstable.

We consider the states \(\mathsf{e}_{1}^{\nu }\), \(\nu <0\). Let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 (p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{\nu }\). Furthermore, \(d H_{\lambda }(\mathsf{e}_{1}^{\nu })=0\) and \(d^{2} H_{ \lambda }(\mathsf{e}_{1}^{\nu })=\operatorname{diag}(2,2,0)\). Hence, as \(d H(\mathsf{e}_{1}^{\nu })= [{ 0\ \ 0\ \ 2\nu}] \), we get that \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\nu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\nu })\). Thus the states \(\mathsf{e}_{1}^{\nu }\), \(\nu <0\) are weakly asymptotically stable.

We consider the states \(\mathsf{e}_{3}^{\mu }\), \(\mu \neq 0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}C\), where \(C(p)=p_{1}\exp (\tfrac{p _{2}}{p_{1}})\), \(\lambda_{0}=\frac{e^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \delta }}}{1-\sqrt{1-4 \delta }}\), and \(\lambda_{1}=- \mu \). We have \(d H_{\lambda }(\mathsf{e}_{3}^{\mu })=0\) and

$$\begin{aligned} d^{2} H_{\lambda }\bigl(\mathsf{e}_{3}^{\mu } \bigr)= \left[\textstyle\begin{array}{c@{\quad}c@{\quad}c} e^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \delta }} ( \sqrt{1-4 \delta }+\delta ) & \frac{1}{2} e^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \delta }} ( 1-\sqrt{1-4 \delta } ) & 0 \\ \frac{1}{2} e^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \delta }} ( 1-\sqrt{1-4 \delta } ) & \frac{e^{\frac{1}{2}- \frac{1}{2} \sqrt{1-4 \delta }} ( 1+\sqrt{1-4 \delta }-2 \delta ) }{2 \delta } & 0 \\ 0 & 0 & \frac{2 e^{\frac{1}{2}-\frac{1}{2} \sqrt{1-4 \delta }}}{1-\sqrt{1-4 \delta }} \end{array}\displaystyle \right] . \end{aligned}$$

A standard computation shows that \(d^{2} H_{\lambda }(\mathsf{e} _{3}^{\mu })\) is positive definite. Therefore the states \(\mathsf{e}_{3}^{\mu }\), \(\mu \neq 0\) are stable. As \(d H( \mathsf{e}_{3}^{0})=0\) and \(d^{2} H(\mathsf{e}_{3}^{0})= \operatorname{diag}(2\delta ,2,2)\) is positive definite, it follows that \(\mathsf{e}_{3}^{0}\) is stable.

(c) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\mu }=(0,0,\mu )\quad \text{and}\quad \mathsf{e}_{2} ^{\nu }=\bigl(\nu ,\tfrac{1}{2} \nu ,0 \bigr). \end{aligned}$$

The linearization of \(\vec{H}\) has eigenvalues \(\{0, 2 \mu , 2 \mu \}\) at \(\mathsf{e}_{1}^{\mu }\). Therefore the states \(\mathsf{e}_{1}^{\mu }\), \(\mu >0\) are spectrally unstable.

We consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 (p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{\mu }\). Furthermore, \(d H_{\lambda }(\mathsf{e}_{1}^{\mu })=0\) and \(d^{2} H_{ \lambda }(\mathsf{e}_{1}^{\mu })=\operatorname{diag}(2,2,0)\). Hence, as \(d H(\mathsf{e}_{1}^{\mu })= [{ 0\ \ 0\ \ 2\mu }] \), we get that \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\). Thus the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable.

Consider the state \(\mathsf{e}_{1}^{0}\). As \(d H(\mathsf{e}_{1} ^{0})=0\) and \(d^{2} H(\mathsf{e}_{1}^{0})=\operatorname{diag}( \tfrac{1}{2},2,2)\) is positive definite, it follows that \(\mathsf{e}_{3}^{0}\) is stable. To prove weak asymptotic stability, let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} F\), where \(F(p)= ( 1+p _{3} ) H(p)\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(F(p)\geq 0\) and \(\vec{H}[F](p)=-2 ( \tfrac{1}{4} p_{1}^{2}-p _{1} p_{2}+p_{2}^{2} ) ( \tfrac{1}{4} p_{1}^{2}+p_{2}^{2}+p _{3}^{2} ) \leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{0}\). Moreover, \(dH_{\lambda}(\mathsf{e}_{1}^{0})=0\) and \(d^{2}H_{\lambda}(\mathsf{e}_{1}^{0})=\operatorname{diag}(\tfrac{1}{2},2,2)\). Thus the state \(\mathsf{e}_{1}^{0}\) is weakly asymptotically stable.

Consider the states \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\). Let \(F(p)=p_{1}^{2}+p_{2}^{2}\) and let \(U\) be the open set given by \(U=\{p :\sqrt{F(p)}>|\nu |\}\). As \(\sqrt{F(\mathsf{e}_{2} ^{\nu })}=\tfrac{\sqrt{5}}{2} |\nu |\), it follows that \(\mathsf{e}_{2}^{\nu }\in U\). We have \(\dot{p}_{3}=-\frac{1}{2} ( p_{1}-2 p_{2} ) ^{2}\leq 0\). Therefore, \(W_{\varepsilon }= \{p : p_{3}\leq \varepsilon \}\) is an invariant subset for \(\varepsilon \in \mathbb{R}\) (in the sense that \(p(t)\in W_{ \varepsilon }\) for \(t>0\) whenever \(p(0)\in W_{\varepsilon }\)). Let \(V=\{p : \sqrt{F(p)}>\frac{1}{2}|\nu |\}\). Note that \(U\subset V\). Suppose \(N\subset U\) is a neighbourhood of \(\mathsf{e}_{2}^{\nu }\). There exists \(\varepsilon <0\) such that \((\nu ,\tfrac{1}{2}\nu ,\varepsilon )\in N\cap V\cap W_{\varepsilon }\). Let \(p(\cdot )\) be the integral curve satisfying \(p(0)=( \nu ,\tfrac{1}{2}\nu ,\varepsilon )\). To prove instability, it suffices to show that there exists \(t_{1}>0\) such that \(\sqrt{F(p(t _{1}))}<|\nu |\) (and so \(p(t_{1})\notin U\)). If there exists \(t_{1}>0\) such that \(p(t_{1})\notin V\), then we are done. On the other hand, assume \(p(t)\in V\) for \(t>0\). As \(W_{\varepsilon }\) is an invariant subset, it follows that \(p(t)\in W_{\varepsilon }\cap V\) for \(t>0\). We have

$$\begin{aligned} \vec{H}[F](p) &=4 \bigl( p_{1}^{2}-p_{1} p_{2}+p_{2}^{2} \bigr) p_{3}=4 \bigl( \bigl(\tfrac{1}{\sqrt{2}}p_{1}-\tfrac{1}{\sqrt{2}}p_{2} \bigr)^{2}+ \tfrac{1}{2}F(p) \bigr) p_{3}. \end{aligned}$$

Thus \(\frac{d}{dt}F(p(t))<\tfrac{1}{2}\nu^{2}\varepsilon \). Accordingly, \(F(p(t))\leq \tfrac{5}{4}\nu^{2}+\tfrac{1}{2}\nu^{2}\varepsilon t\). Hence, for \(t_{1}=-\frac{11}{8 \varepsilon }>0\), we get \(\sqrt{F(p(t _{1}))}\leq \tfrac{3}{4}|\nu |<|\nu |\).

2.4 B.4 Stability of Equilibria for \(\mathsf{Np}(6)\)

Let \(\kappa_{\alpha }^{-}=-1+2 \alpha^{2}-2 \alpha \sqrt{\alpha ^{2}-1}\). We distinguish between the cases: (a) \(\beta =0\), (b) (\(0< \alpha <1\) and \(0<\beta \leq 1\)) or (\(\alpha >1\) and \(0< \beta <\kappa_{\alpha }^{-}\)), (c) \(\alpha >1\) and \(\beta = \kappa_{\alpha }^{-}\), and (d) \(\alpha >1\) and \(\kappa_{\alpha }^{-}<\beta \leq 1\). We shall make use of the local Casimirs \(C_{\pm }\in C^{\infty }(U_{\pm })\) as described in Sect. 3.1. We omit the proof for (d) as it is similar to (c).

(a) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\mu }=(0,0,\mu ),\qquad \mathsf{e}_{2}^{\nu }=( \alpha \nu ,\nu ,0),\quad \text{and}\quad \mathsf{e}_{3}^{\nu }=( \nu ,0,0). \end{aligned}$$

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\mu }\) has eigenvalues \(\{0, 2 (\alpha -1) \mu , 2 (\alpha +1) \mu \}\). Thus the states \(\mathsf{e}_{1}^{\mu }\neq 0\) are spectrally unstable if \(0<\alpha <1\), whereas the states \(\mathsf{e}_{1}^{\mu }\), \(\mu >0\) are spectrally unstable if \(\alpha >1\). The linearization of \(\vec{H}\) at \(\mathsf{e}_{2}^{\nu }\) has eigenvalues \(\{0, -2 \sqrt{ ( \alpha^{2}-1 ) \nu^{2}}, 2 \sqrt{ ( \alpha^{2}-1 ) \nu^{2}}\}\). Thus the states \(\mathsf{e} _{2}^{\nu }\) are spectrally unstable if \(\alpha >1\).

Consider the states \(\mathsf{e}_{2}^{\nu }\), \(\nu <0\) and suppose \(0<\alpha <1\). (Note that \(\mathsf{e}_{2}^{\nu }\in U_{+}\) as \((\alpha -1)\nu >0\).) Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1} C _{+}\). Setting \(\lambda_{1}= -2^{\frac{2}{\alpha +1}} \nu ((\alpha -1) \nu )^{\frac{\alpha -1}{\alpha +1}} \lambda_{0}\), we get \(d H_{\lambda }(\mathsf{e}_{2}^{\nu })=0\). Furthermore, we find that

$$\begin{aligned} d^{2} H_{\lambda }\bigl(\mathsf{e}_{2}^{\nu } \bigr)= \left[\textstyle\begin{array}{c@{\quad}c@{\quad}c} -\frac{2 \lambda_{0}}{\alpha^{2}-1} & \frac{2 \alpha \lambda_{0}}{ \alpha^{2}-1} & 0 \\ \frac{2 \alpha \lambda_{0}}{\alpha^{2}-1} & \frac{2 (\alpha -2) \alpha \lambda_{0}}{\alpha^{2}-1} & 0 \\ 0 & 0 & 2 \lambda_{0} \end{array}\displaystyle \right] . \end{aligned}$$

Setting \(\lambda_{0}=1\), a simple calculation shows that \(d^{2} H _{\lambda }(\mathsf{e}_{2}^{\nu })\) is positive definite. Hence the states \(\mathsf{e}_{2}^{\nu }\), \(\nu <0\) are stable whenever \(0<\alpha <1\). A similar argument (involving \(C_{-}\)) shows that the states \(\mathsf{e}_{2}^{\nu }\), \(\nu >0\) are stable whenever \(0<\alpha <1\).

Next, consider the states \(\mathsf{e}_{3}^{\nu }\), \(\nu \neq 0\). Let \(H_{\lambda }=\lambda_{0} H+\lambda_{1}C_{\pm }\), with \(\lambda _{0}=1\) and \(\lambda_{1}=1\). (If \(\nu >0\), then \(\mathsf{e} _{3}^{\nu }\in U_{+}\); if \(\nu <0\), then \(\mathsf{e}_{3}^{\nu } \in U_{-}\).) We have \(d H_{\lambda }(\mathsf{e}_{3}^{\nu })=0\) and \(d^{2} H_{\lambda }(\mathsf{e}_{3}^{\nu })=\operatorname{diag}(0,1,1)\). Moreover, \(W=\ker d C_{\pm }(\mathsf{e}_{3}^{\nu })=\{(\alpha x, x, y) : x,y\in \mathbb{R}\}\). Accordingly, \(d^{2} H_{\lambda }( \mathsf{e}_{3}^{\nu })\) is positive definite when restricted to \(W\). Thus the states \(\mathsf{e}_{3}^{\nu }\), \(\nu \neq 0\) are stable (for \(\alpha >0\), \(\alpha \neq 1\)).

Consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) and suppose \(\alpha >1\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1} F\), with \(F(p)=p_{1}^{2}+p_{2}^{2}\geq 0\), \(\lambda_{0}=0\) and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 ( \alpha p_{1}^{2}-2 p_{1} p_{2}+\alpha p_{2}^{2} ) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{\mu }\). Furthermore, \(d H_{ \lambda }(\mathsf{e}_{1}^{\mu })=0\) and \(d^{2} H_{\lambda }( \mathsf{e}_{1}^{\mu })=\operatorname{diag}(2,2,0)\). As \(d H( \mathsf{e}_{1}^{\mu })= [{ 0\ \ 0\ \ 2\mu}] \), it follows that \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\). Thus the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable whenever \(\alpha >1\).

(b) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\nu } =&(0,0,\nu ),\qquad \mathsf{e}_{2}^{\nu }= \biggl(\nu ,\frac{(1+ \beta )+\sqrt{1+\beta ( 2-4 \alpha^{2}+\beta ) } }{2 \alpha }\nu ,0\biggr),\quad\text{and} \\ \mathsf{e}_{3}^{\mu } =&\biggl(\mu , \frac{(1+\beta )-\sqrt{1+ \beta ( 2-4 \alpha^{2}+\beta ) } }{2 \alpha }\mu ,0\biggr). \end{aligned}$$

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\nu }\) has eigenvalues \(\{0,2 (\alpha -1) \nu ,2 (\alpha +1) \nu \}\). Hence the states \(\mathsf{e}_{1}^{\nu }\), \(\nu \neq 0\) are spectrally unstable when \(0<\alpha <1\), whereas the states \(\mathsf{e}_{1} ^{\nu }\), \(\nu >0\) are spectrally unstable if \(\alpha >1\). The linearization of \(\vec{H}\) at \(\mathsf{e}_{2}^{\nu }\) has eigenvalues \(\lambda_{1}=0\) and

$$\begin{aligned} \lambda_{2,3}=\pm \frac{1}{\alpha }\sqrt{2} |\nu |\sqrt{(1+\beta ) \bigl( -1-\beta^{2}+*_{1}-2 \alpha^{2} *_{1}+\beta \bigl( -2+4 \alpha ^{2}+*_{1} \bigr) \bigr) } \end{aligned}$$

where \(*_{1}=\sqrt{1+\beta ( 2-4 \alpha^{2}+\beta ) }\). It is easy to show that one of these eigenvalues have positive real part if \(\alpha >1\) and \(0<\beta <\kappa_{\alpha }^{-}\). Therefore, under these conditions, the states \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{2}^{\nu }\), \(\nu <0\) and suppose \(0<\alpha <1\) and \(0<\beta \leq 1\). Then \(\mathsf{e}_{2}^{ \nu }\in U_{+}\), i.e., \(C_{+}\) is defined in some neighbourhood of \(\mathsf{e}_{2}^{\nu }\). (If \(\nu >0\), then \(\mathsf{e}_{2}^{ \nu }\in U_{-}\) and a similar argument involving \(C_{-}\) yields the result.) Let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} C_{+}\). If we set

$$\begin{aligned} { \lambda_{0}=\frac{\lambda_{1}}{(1+\alpha ) \beta } 2^{\frac{-3+ \alpha }{1+\alpha }} ( -1+ \beta +*_{1} ) \biggl( -\frac{ ( 1-2 \alpha +\beta +*_{1} ) \nu }{\alpha } \biggr) ^{-\frac{2 \alpha }{1+ \alpha }}} \end{aligned}$$

where \(*_{1}=\sqrt{1+\beta ( 2-4 \alpha^{2}+\beta ) }\), then \(d H_{\lambda }(\mathsf{e}_{2}^{\nu })=0\). Moreover, if we set \(\lambda_{1}=1\), a quite involved calculation shows that \(d^{2} H _{\lambda }(\mathsf{e}_{2}^{\nu })\) is positive definite. Hence the states \(\mathsf{e}_{2}^{\nu }\), \(\nu <0\) are stable whenever \(0<\alpha <1\) and \(0<\beta \leq 1\). (Likewise, the states \(\mathsf{e}_{2}^{\nu }\), \(\nu >0\) are stable whenever \(0<\alpha <1\) and \(0<\beta \leq 1\).)

Consider the states \(\mathsf{e}_{3}^{\mu }\), \(\mu \neq 0\). Suppose \(\mu >0\). Then \(\mathsf{e}_{3}^{\mu }\in U_{+}\) i.e., \(C_{+}\) is defined in a neighbourhood of \(\mathsf{e}_{3}^{ \mu }\). Let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} C_{+}\). If we set

$$\begin{aligned} {\lambda_{0}=\frac{ 2^{\frac{-3+\alpha }{1+\alpha }}\lambda_{1}}{(1+ \alpha ) \beta } ( -1+\beta -*_{1} ) \biggl( \frac{ ( -1+2 \alpha -\beta +*_{1} ) \nu }{\alpha } \biggr) ^{-\frac{2 \alpha }{1+ \alpha }}} \end{aligned}$$

where \(*_{1}=\sqrt{1+\beta ( 2-4 \alpha^{2}+\beta ) }\), then \(d H_{\lambda }(\mathsf{e}_{3}^{\mu })=0\). Moreover, if we set \(\lambda_{1}=1\), a quite involved computation shows that \(d^{2} H _{\lambda }(\mathsf{e}_{2}^{\nu })\) is positive definite. Hence the states \(\mathsf{e}_{3}^{\mu }\), \(\mu >0\) are stable. (Likewise, the states \(\mathsf{e}_{3}^{\mu }\), \(\mu <0\) are stable.) As \(dH(\mathsf{e}_{3}^{0})=0\) and \(d^{2}H(\mathsf{e}_{3}^{0})=\operatorname{diag}(2\beta,2,2)\), it follows that the state \(\mathsf{e}_{3}^{0}\) is stable.

Consider the states \(\mathsf{e}_{1}^{\nu }\), \(\nu <0\) and suppose \(\alpha >1\) and \(0<\beta <\kappa_{\alpha }^{-}\). Let \(H_{ \lambda }=\lambda_{0}H+\lambda_{1} F\), with \(F(p)=p_{1}^{2}+p_{2} ^{2}\geq 0\), \(\lambda_{0}=0\) and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 ( \alpha p_{1}^{2}-2 p_{1} p_{2}+\alpha p_{2} ^{2} ) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{\nu }\). Furthermore, \(d H_{\lambda }(\mathsf{e} _{1}^{\nu })=0\) and \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\nu })= \operatorname{diag}(2,2,0)\). As \(d H(\mathsf{e}_{1}^{\nu })= [{ 0\ \ 0\ \ 2\nu}] \), it follows that \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\nu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\nu })\). Thus the states \(\mathsf{e}_{1}^{\nu }\), \(\nu <0\) are weakly asymptotically stable whenever \(\alpha >1\) and \(0<\beta <\kappa_{\alpha }^{-}\).

(c) We have the following equilibrium states

$$\begin{gathered} \mathsf{e}_{1}^{\mu }=(0,0,\mu )\quad \text{and}\quad \mathsf{e}_{2} ^{\nu }=\bigl(\nu ,\bigl(\alpha -\sqrt{ \alpha^{2}-1} \bigr)\nu ,0\bigr). \end{gathered}$$

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\mu }\) has eigenvalues \(\{0,2 (\alpha -1) \mu ,2 (\alpha +1 ) \mu \}\). Therefore (as \(\alpha >1\) by assumption) the states \(\mathsf{e}_{1}^{ \mu }\), \(\mu >0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 ( \alpha p_{1}^{2}-2 p_{1} p_{2}+\alpha p_{2} ^{2} ) p_{3}\leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{\mu }\)). Furthermore, we have that \(d H_{\lambda }(\mathsf{e}_{1}^{\mu })=0\), \(d^{2} H_{\lambda }(\mathsf{e}_{1} ^{\mu })=\operatorname{diag}(2,2,0)\), and \(d H(\mathsf{e}_{1}^{ \mu })= [{ 0 \ \ 0\ \ 2\mu}] \). Therefore \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\). Thus the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable.

Consider the state \(\mathsf{e}_{1}^{0}\). As \(d H(\mathsf{e}_{1} ^{0})=0\) and \(d^{2} H(\mathsf{e}_{1}^{0})=\operatorname{diag}(2 \kappa_{\alpha }^{-},2,2)\) is positive definite, it follows that the state \(\mathsf{e}_{1}^{0}\) is stable. To prove weak asymptotic stability, let \(H_{\lambda }=\lambda_{0} H+\lambda_{1} F\), where \(F(p)= ( 1+p_{3} ) H(p)\), \(\lambda_{0}=0\), and \(\lambda _{1}=1\). We have \(F(p)\geq 0\) and

$$\begin{aligned} \vec{H}[F](p)=-2 \bigl( \alpha \kappa_{\alpha }^{-} p_{1}^{2}-\bigl(1+ \kappa_{\alpha }^{-} \bigr) p_{1} p_{2}+\alpha p_{2}^{2} \bigr) H(p)\leq 0 \end{aligned}$$

for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{0}\). (The quadratic form \(\alpha \kappa_{\alpha }^{-} p_{1}^{2}-(1+ \kappa_{\alpha }^{-}) p_{1} p_{2}+\alpha p_{2}^{2}\) is positive semidefinite; it has leading principle minors \(\alpha \kappa_{ \alpha }^{-}\) and 0.) Moreover, \(d H_{\lambda }(\mathsf{e} _{1}^{0})=0\) and \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{0})= \operatorname{diag}(2\kappa_{\alpha }^{-},2,2)\). Thus the state \(\mathsf{e}_{1}^{0}\) is weakly asymptotically stable.

Consider the states \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\). Let \(F(p)=p_{1}^{2}+p_{2}^{2}\) and let \(U\) be the open set given by \(\{p :\sqrt{F(p)}>\tfrac{1}{2}|\nu |\}\). As \(\sqrt{F( \mathsf{e}_{2}^{\nu })}=\sqrt{1+ ( \alpha -\sqrt{\alpha^{2}-1} ) ^{2}} |\nu |\), it follows that \(\mathsf{e}_{2}^{\nu }\in U\). We have \(\dot{p}_{3}=-2(\alpha \kappa_{\alpha }^{-} p_{1}^{2}-(\kappa_{ \alpha }^{-}+1)p_{1}p_{2}+\alpha p_{2}^{2})\leq 0\). Therefore, \(W_{\varepsilon }=\{p : p_{3}\leq \varepsilon \}\) is an invariant subset for \(\varepsilon \in \mathbb{R}\) (in the sense that \(p(t)\in W_{\varepsilon }\) for \(t>0\) whenever \(p(0)\in W _{\varepsilon }\)). Let \(V=\{p : \sqrt{F(p)}>\frac{1}{4}|\nu |\}\). Note that \(U\subset V\). Suppose \(N\subset U\) is a neighbourhood of \(\mathsf{e}_{2}^{\nu }\). There exists \(\varepsilon <0\) such that \((\nu ,(\alpha -\sqrt{\alpha^{2}-1} )\nu ,\varepsilon ) \in N\cap V\cap W_{\varepsilon }\). Let \(p(\cdot )\) be the integral curve satisfying \(p(0)=(\nu ,(\alpha -\sqrt{\alpha^{2}-1} )\nu , \varepsilon )\). To prove instability, it suffices to show that there exists \(t_{1}>0\) such that \(\sqrt{F(p(t_{1}))}<\tfrac{1}{2}| \nu |\) (and so \(p(t_{1})\notin U\)). If there exists \(t_{1}>0\) such that \(p(t_{1})\notin V\), then we are done. On the other hand, suppose \(p(t)\in V\) for \(t>0\). As \(W_{\varepsilon }\) is an invariant subset, it follows that \(p(t)\in W_{\varepsilon }\cap V\) for \(t>0\). We have

$$\begin{aligned} \vec{H}[F](p) &=4 \bigl( \alpha p_{1}^{2}-2 p_{1} p_{2}+\alpha p_{2} ^{2} \bigr) p_{3} =4 \bigl( (p_{1}-p_{2})^{2}+( \alpha -1)F(p) \bigr) p _{3}. \end{aligned}$$

Thus \(\frac{d}{dt}F(p(t))<\tfrac{1}{4}(\alpha -1)\nu^{2}\varepsilon \). Accordingly,

$$\begin{aligned} F\bigl(p(t)\bigr)\leq \bigl( 1+ \bigl( \alpha -\sqrt{\alpha^{2}-1} \bigr) ^{2} \bigr) \nu^{2}+\tfrac{1}{4}(\alpha -1) \nu^{2}\varepsilon t. \end{aligned}$$

Hence, for \(t_{1}=\frac{ ( 1-18 \alpha^{2}+18 \alpha \sqrt{-1+ \alpha^{2}} ) \nu^{2}}{9 (-1+\alpha ) \varepsilon |\nu |}>0\), we get \(\sqrt{F(p(t_{1}))}\leq \tfrac{1}{3}|\nu |<\tfrac{1}{2}| \nu |\).

Remark 12

The function \(F(p)= ( 1+p_{3} ) ( \beta p_{1}^{2}+p_{2} ^{2}+p_{3}^{2} ) \) suffices to show that the origin is weakly asymptotically stable whenever \(4\alpha^{2}\beta \geq (1+\beta )^{2}\). This inequality holds for cases (c) and (d).

2.5 B.5 Stability of Equilibria for \(\mathsf{Np}(8)\)

Let \(\kappa_{\alpha }^{-}=1+2 \alpha^{2}-2 \alpha \sqrt{\alpha ^{2}+1}\). We distinguish between the cases (a) \(\beta =0\), (b) \(0<\beta <\kappa_{\alpha }^{-}\), (c) \(\beta =\kappa_{\alpha }^{-}\), and (d) \(\kappa_{\alpha }^{-}<\beta \leq 1\). The proof for (d) is similar to that for (c) and hence omitted.

(a) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\mu }=(0,0,\mu ),\qquad \mathsf{e}_{2}^{\nu }=( \alpha \nu ,\nu ,0),\quad \text{and}\quad \mathsf{e}_{3}^{\nu }=( \nu ,0,0). \end{aligned}$$

Consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 \alpha ( p_{1}^{2}+p_{2}^{2} ) p_{3} \leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{ \mu }\). Furthermore \(d H_{\lambda }(\mathsf{e}_{1}^{\mu })=0\), \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })=\operatorname{diag}(2,2,0)\), and \(d H(\mathsf{e}_{2}^{\mu })= [{ 0 \ \ 0 \ \ 2\mu} ] \). Hence, as \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\), the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable.

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\mu }\) has eigenvalues \(\{0,2 (-i \mu +\alpha \mu ),2 (i \mu +\alpha \mu )\}\). Therefore, if \(\mu >0\), then \(\mathsf{e}_{1}^{\mu }\) is spectrally unstable. The linearization of \(\vec{H}\) at \(\mathsf{e}_{2}^{ \nu }\) has eigenvalues \(\{0,-2 \sqrt{ ( 1+\alpha^{2} ) \nu^{2}},2 \sqrt{ ( 1+\alpha^{2} ) \nu^{2}}\}\). Thus the states \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{3}^{\nu }\), \(\nu \neq 0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1} C\), with \(\lambda_{0}=1\) and \(\lambda_{1}=0\). (Note that \(C\) is locally defined in some neighbourhood of \(\mathsf{e}_{3}^{\nu }\).) We have \(d H_{\lambda }(\mathsf{e}_{3}^{\nu })=0\) and \(d^{2} H_{\lambda }(\mathsf{e} _{3}^{\nu })=\operatorname{diag}(0,2,2)\). Moreover \(W=\ker d C( \mathsf{e}_{3}^{\nu })=\{(\alpha x,-x,y) : x,y\in \mathbb{R}\}\). Hence \(d^{2} H_{\lambda }(\mathsf{e}_{3}^{\nu })\) is positive definite when restricted to \(W\). Therefore the states \(\mathsf{e} _{3}^{\nu }\), \(\nu \neq 0\) are stable.

(b) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\mu } =&(0,0,\mu ),\qquad \mathsf{e}_{2}^{\nu }= \biggl(\nu ,\frac{1- \beta +\sqrt{1-2 \beta -4 \alpha^{2} \beta +\beta^{2}}}{2 \alpha } \nu ,0\biggr), \quad \text{and} \\ \mathsf{e}_{3}^{\nu } =&\biggl( \nu , \frac{1-\beta -\sqrt{1-2 \beta -4 \alpha^{2} \beta +\beta^{2}} }{2 \alpha }\nu ,0\biggr). \end{aligned}$$

Consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 \alpha ( p_{1}^{2}+p_{2}^{2} ) p_{3} \leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{ \mu }\). Furthermore, \(d H_{\lambda }(\mathsf{e}_{1}^{\mu })=0\), \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })=\operatorname{diag}(2,2,0)\), and \(d H(\mathsf{e}_{2}^{\mu })= [{ 0 \ \ 0 \ \ 2 \mu}] \). Hence, as \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\), the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable. As \(d H(\mathsf{e}_{1}^{0})=0\) and \(d^{2} H(\mathsf{e}_{1}^{0})=\operatorname{diag}(2 \beta , 2,2)\), it follows that \(\mathsf{e}_{1}^{0}\) is stable.

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\mu }\) has eigenvalues \(\{0,2 (-i \mu +\alpha \mu ),2 (i \mu +\alpha \mu )\}\). Therefore, if \(\mu >0\), then \(\mathsf{e}_{1}^{\mu }\) is spectrally unstable. The linearization of \(\vec{H}\) at \(\mathsf{e}_{2}^{ \nu }\) has eigenvalues \(\lambda_{1}=0\),

$$\begin{aligned} \lambda_{2,3}=\pm \frac{1}{\alpha }\sqrt{2} \sqrt{-(-1+\beta ) \bigl( 1+\beta^{2}-*_{1}-2 \alpha^{2} *_{1}+\beta \bigl( -2-4 \alpha ^{2}+*_{1} \bigr) \bigr) \nu^{2}} \end{aligned}$$

where \(*_{1}=\sqrt{1+\beta ( -2-4 \alpha^{2}+\beta ) }\). A tedious computation shows that there is an eigenvalue with positive real part. Thus the states \(\mathsf{e}_{2}^{\nu }\), \(\nu \neq 0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{3}^{\nu }\), \(\nu \neq 0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1} C\), with \(\lambda_{0}=1\) and

$$\begin{aligned} \lambda_{1}=\frac{2 \beta ( -\frac{\alpha +\alpha \beta +i \sqrt{1+ \beta ( -2-4 \alpha^{2}+\beta ) }}{(i+\alpha ) (-1+\beta )} ) ^{-i \alpha } }{1+\beta +\sqrt{1+\beta ( -2-4 \alpha^{2}+\beta ) }}. \end{aligned}$$

(Note that \(C\) is locally defined in some neighbourhood of \(\mathsf{e}_{3}^{\nu }\).) We have \(d H_{\lambda }(\mathsf{e}_{3} ^{\nu })=0\). Moreover, a quite involved computation shows that \(d^{2} H_{\lambda }(\mathsf{e}_{3}^{\nu })\) is positive definite when restricted to

$$\begin{aligned} W=\ker d C\bigl(\mathsf{e}_{3}^{\nu }\bigr)= \biggl\{ \biggl( -\frac{x}{2 \beta },\frac{x \alpha }{1-\beta -\sqrt{1-2 \beta -4 \alpha^{2} \beta +\beta^{2}}},y \biggr) : x,y\in \mathbb{R} \biggr\} . \end{aligned}$$

Therefore the states \(\mathsf{e}_{3}^{\nu }\), \(\nu \neq 0\) are stable.

(c) We have the following equilibrium states

$$\begin{aligned} \mathsf{e}_{1}^{\mu }=(0,0,\mu )\quad \text{and}\quad \mathsf{e}_{2}^{\nu }=\bigl( \nu , \bigl( -\alpha +\sqrt{1+ \alpha^{2}} \bigr) \nu ,0\bigr). \end{aligned}$$

Consider the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\). Let \(H_{\lambda }=\lambda_{0}H+\lambda_{1}F\), where \(F(p)=p_{1}^{2}+p _{2}^{2}\geq 0\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(\vec{H}[F](p)=4 \alpha ( p_{1}^{2}+p_{2}^{2} ) p_{3} \leq 0\) for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{ \mu }\). Furthermore, \(d H_{\lambda }(\mathsf{e}_{1}^{\mu })=0\), \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })=\operatorname{diag}(2,2,0)\), and \(d H(\mathsf{e}_{1}^{\mu })= [{ 0 \ \ 0 \ \ 2 \mu}] \). Hence, as \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{\mu })\) is positive definite when restricted to \(W=\ker d H(\mathsf{e}_{1} ^{\mu })\), the states \(\mathsf{e}_{1}^{\mu }\), \(\mu <0\) are weakly asymptotically stable.

Consider the state \(\mathsf{e}_{1}^{0}\). As \(d H(\mathsf{e}_{1} ^{0})=0\) and \(d^{2} H(\mathsf{e}_{1}^{0})=\operatorname{diag}(2 \kappa_{\alpha }^{-}, 2,2)\), it follows that \(\mathsf{e}_{1}^{0}\) is stable. To prove weak asymptotic stability, let \(H_{\lambda }= \lambda_{0} H+\lambda_{1} F\), where \(F(p)= ( 1+p_{3} ) H(p)\), \(\lambda_{0}=0\), and \(\lambda_{1}=1\). We have \(F(p)\geq 0\) and

$$\begin{aligned} \vec{H}[F](p)=-2 \bigl( \alpha \kappa_{\alpha }^{-} p_{1}^{2}+\bigl( \kappa_{\alpha }^{-} -1 \bigr) p_{1} p_{2} +\alpha p_{2}^{2} \bigr) H(p) \leq 0 \end{aligned}$$

for \(p\) in some neighbourhood of \(\mathsf{e}_{1}^{0}\). (The quadratic form \(\alpha \kappa_{\alpha }^{-} p_{1}^{2}+(\kappa_{ \alpha }^{-} -1) p_{1} p_{2} +\alpha p_{2}^{2}\) is positive semidefinite; it has leading principle minors \(\alpha \kappa_{ \alpha }^{-}\) and 0.) Moreover, \(d H_{\lambda }(\mathsf{e} _{1}^{0})=0\) and \(d^{2} H_{\lambda }(\mathsf{e}_{1}^{0})= \operatorname{diag}(2\kappa_{\alpha }^{-},2,2)\). Thus the state \(\mathsf{e}_{1}^{0}\) is weakly asymptotically stable.

The linearization of \(\vec{H}\) at \(\mathsf{e}_{1}^{\mu }\) has eigenvalues \(\{0,2 (-i \mu +\alpha \mu ),2 (i \mu +\alpha \mu )\}\). Therefore the states \(\mathsf{e}_{1}^{\mu }\), \(\mu >0\) are spectrally unstable.

Consider the states \(\mathsf{e}_{2}^{\nu }\). Let \(F(p)=p_{1}^{2}+p _{2}^{2}\) and let \(U\) be the open set given by \(\{p : \sqrt{F(p)}>\tfrac{1}{2}|\nu |\}\). As \(\sqrt{F(\mathsf{e}_{2}^{ \nu })}=\sqrt{1+ ( \alpha -\sqrt{\alpha^{2}+1} ) ^{2}} | \nu |\), it follows that \(\mathsf{e}_{2}^{\nu }\in U\). We have

$$\begin{aligned} \dot{p}_{3}=- \bigl( \sqrt{\tfrac{2}{\alpha }}\bigl(- \alpha^{2}+\sqrt{ \alpha^{2}+\alpha^{4}} \bigr)p_{1}-\sqrt{2 \alpha } p_{2} \bigr) ^{2} \leq 0. \end{aligned}$$

Therefore, \(W_{\varepsilon }=\{p : p_{3}\leq \varepsilon \}\) is an invariant subset for \(\varepsilon \in \mathbb{R}\) (in the sense that \(p(t)\in W_{\varepsilon }\) for \(t>0\) whenever \(p(0) \in W_{\varepsilon }\)). Let \(V=\{p : \sqrt{F(p)}>\frac{1}{4}| \nu |\}\). Note that \(U\subset V\). Suppose \(N\subset U\) is a neighbourhood of \(\mathsf{e}_{2}^{\nu }\). There exists \(\varepsilon <0\) such that \((\nu ,(\alpha -\sqrt{\alpha^{2}-1} )\nu ,\varepsilon )\in N\cap V\cap W_{\varepsilon }\). Let \(p(\cdot )\) be the integral curve satisfying \(p(0)=(\nu , ( -\alpha +\sqrt{1+\alpha^{2}} ) \nu ,\varepsilon )\). To prove instability, it suffices to show that there exists \(t_{1}>0\) such that \(\sqrt{F(p(t_{1}))}< \tfrac{1}{2}|\nu |\) (and so \(p(t_{1})\notin U\)). If there exists \(t_{1}>0\) such that \(p(t_{1})\notin V\), then we are done. On the other hand, assume \(p(t)\in V\) for \(t>0\). As \(W_{\varepsilon }\) is an invariant subset, it follows that \(p(t)\in W_{\varepsilon }\cap V\) for \(t>0\). We have \(\vec{H}[F](p)=4 \alpha F(p) p_{3}\). Thus \(\frac{d}{dt}F(p(t))<\tfrac{1}{4}\alpha \nu^{2}\varepsilon \). Accordingly,

$$\begin{aligned} F\bigl(p(t)\bigr)\leq \bigl( 1+ \bigl( \alpha -\sqrt{1+\alpha^{2}} \bigr) ^{2} \bigr) \nu^{2}+\tfrac{1}{4}\alpha \nu^{2}\varepsilon t. \end{aligned}$$

Hence, for \(t_{1}=\frac{-68+72 \alpha ( -\alpha +\sqrt{1+ \alpha^{2}} ) }{9 \alpha \varepsilon }>0\), we get \(\sqrt{F(p(t _{1}))}\leq \tfrac{1}{3}|\nu |<\tfrac{1}{2}|\nu |\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biggs, R., Remsing, C.C. Quadratic Hamilton–Poisson Systems in Three Dimensions: Equivalence, Stability, and Integration. Acta Appl Math 148, 1–59 (2017). https://doi.org/10.1007/s10440-016-0074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0074-1

Keywords

Mathematics Subject Classification

Navigation