Skip to main content
Log in

Quantitative Convergence Towards a Self-Similar Profile in an Age-Structured Renewal Equation for Subdiffusion

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

An Erratum to this article was published on 20 October 2016

Abstract

Continuous-time random walks are generalisations of random walks frequently used to account for the consistent observations that many molecules in living cells undergo anomalous diffusion, i.e. subdiffusion. Here, we describe the subdiffusive continuous-time random walk using age-structured partial differential equations with age renewal upon each walker jump, where the age of a walker is the time elapsed since its last jump. In the spatially-homogeneous (zero-dimensional) case, we follow the evolution in time of the age distribution. An approach inspired by relative entropy techniques allows us to obtain quantitative explicit rates for the convergence of the age distribution to a self-similar profile, which corresponds to convergence to a stationary profile for the rescaled variables. An important difficulty arises from the fact that the equation in self-similar variables is not autonomous and we do not have a specific analytical solution. Therefore, in order to quantify the latter convergence, we estimate attraction to a time-dependent “pseudo-equilibrium”, which in turn converges to the stationary profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation (1987)

    Book  MATH  Google Scholar 

  2. Bronstein, I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., Garini, Y.: Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103(018102), 1–4 (2009)

    Google Scholar 

  3. Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F.: Probing short-range protein Brownian motion in the cytoplasm of living cells. Nat. Commun. 5, 5891 (2014)

    Article  Google Scholar 

  4. Fedotov, S., Falconer, S.: Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys. Rev. E 85, 031132 (2012)

    Article  Google Scholar 

  5. Fedotov, S., Falconer, S.: Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. Phys. Rev. E 89, 012107 (2014)

    Article  Google Scholar 

  6. Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York (1966)

    MATH  Google Scholar 

  7. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006)

    Article  Google Scholar 

  8. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 74(3 Pt 1), 031116 (2006)

    Article  MathSciNet  Google Scholar 

  9. Höfling, F., Franosch, T.: Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76(4), 046602 (2013). doi:10.1088/0034-4885/76/4/046602

    Article  MathSciNet  Google Scholar 

  10. Melbourne, I., Terhesiu, D.: Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189, 61–110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems (2010)

    Book  Google Scholar 

  12. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84(9), 1235–1260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Montroll, E., Weiss, G.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Parry, B.R., Surovtsev, I.V., Cabeen, M.T., O’Hern, C.S., Dufresne, E.R., Jacobs-Wagner, C.: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156(1–2), 183–194 (2014)

    Article  Google Scholar 

  16. Perthame, B.: Transport Equations in Biology. Birkäuser, Basel (2007). ISBN 978-3-7643-7842-4

    MATH  Google Scholar 

  17. Terhesiu, D.: Error rates in the Darling–Kac law. Stud. Math. 220, 101–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuste, S.B., Lindenberg, K., Ruiz-Lorenzo, J.J.: Subdiffusion-limited reactions. In: Anomalous Transport, pp. 367–395 (2008). Wiley-VCH Verlag GmbH & Co. KGaA

    Chapter  Google Scholar 

Download references

Acknowledgements

This work could not have been written without the help of Vincent Calvez. We wish to thank Sergei Fedotov for many valuable discussions. We also wish to thank our reviewers for their thorough work.

This work was initiated within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Universit’e de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 639638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Mateos González.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10440-016-0077-y.

Appendix

Appendix

1.1 The Case \(\mu=1\)

It is quite interesting to notice that even if the behaviour is not really self-similar, our method gives a precise asymptotic for the case \(\mu=1\). To illustrate this, we focus on the reference case: \(\beta (a)=\frac{1}{1+a}\). In this case the ‘pseudo equilibrium reads’

$$W(\tau,b)=\frac{1}{(\mathrm{e}^{-\tau}+b)\log(1+\mathrm{e}^{\tau})}. $$

This pseudo equilibrium tends to a Dirac mass but gives still quantitative information. Indeed, following the same computation than for Eq. (17) for the case \(\mu<1\), we obtain easily

$$\frac{\mathrm{d}}{ \mathrm{d}\tau} \int_{0}^{1} |w-W|\leq-\frac{\mathrm {e}^{\tau}}{1+\mathrm{e}^{\tau}} \int_{0}^{1} |w-W|+2 \bigl\vert C(\tau)\delta(\tau ) \bigr\vert . $$

Where we also have

$$C(\tau)\delta(\tau) = \int_{0}^{1} \biggl(\frac{\mathrm{e}^{\tau}b}{1+\mathrm {e}^{\tau}b}-1 \biggr)W( \tau,b)\mathrm{d}b. $$

This leads to

$$C(\tau)\delta(\tau)=- \int_{0}^{1} \frac{\mathrm{e}^{-\tau}}{(\mathrm {e}^{-\tau}+b)^{2}\log(1+\mathrm{e}^{\tau})}=\frac{\mathrm{e}^{-\tau}}{\log (1+\mathrm{e}^{\tau})} \biggl(\frac{1}{\mathrm{e}^{-\tau}+1}-\frac {1}{\mathrm{e}^{-\tau}} \biggr). $$

And finally,

$$C(\tau)\delta(\tau)=-\frac{\mathrm{e}^{\tau}}{(1+\mathrm{e}^{\tau})\log (1+\mathrm{e}^{\tau})}\rightarrow0. $$

And we can still claim that \(\int_{0}^{1} |w-W|\rightarrow0\). We can give a (rough) estimate for a rate of convergence. Integrating, we have

$$\int_{0}^{1} |w-W|\leq\frac{1}{1+\mathrm{e}^{\tau}} \int_{0}^{1} |w-W|(\tau=0)+ 2 \frac{1}{1+\mathrm{e}^{\tau}} \int_{0}^{\tau}\frac{\mathrm{e}^{\tau'}}{\log (1+\mathrm{e}^{\tau'})}{\mathrm{d}} \tau' . $$

We estimate the second term

$$\frac{1}{1+\mathrm{e}^{\tau}} \int_{0}^{\tau}\frac{\mathrm{e}^{\tau'}}{\log (1+\mathrm{e}^{\tau'})}{\mathrm{d}} \tau'= \frac{1}{1+\mathrm{e}^{\tau}} \int_{1}^{\mathrm{e}^{\tau}} \frac{1}{\log(1+u)}{\mathrm{d}}u. $$

This term behaves as \(1 / \tau\). Indeed, we have easily (splitting the integral at \(\mathrm{e}^{\alpha\tau} \) for \(\alpha<1\)):

$$\begin{aligned} \frac{1}{\log(1+\mathrm{e}^{\tau})} \leq&\frac{1}{1+\mathrm{e}^{\tau}} \int _{1}^{\mathrm{e}^{\tau}} \frac{1}{\log(1+u)}{\mathrm{d}}u\leq \frac{\mathrm {e}^{(\alpha-1) \tau}}{1+\mathrm{e}^{-\tau}}+\frac{1}{\log(1+\mathrm {e}^{\alpha\tau})} \\ \int_{0}^{1} |w-W| \leq&\frac{1}{1+\mathrm{e}^{\tau}} \int_{0}^{1} |w-W|(\tau=0)+ \frac{K}{1+\tau}\leq \frac{K'}{1+\tau} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry, H., Lepoutre, T. & González, Á.M. Quantitative Convergence Towards a Self-Similar Profile in an Age-Structured Renewal Equation for Subdiffusion. Acta Appl Math 145, 15–45 (2016). https://doi.org/10.1007/s10440-016-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0048-3

Keywords

Mathematics Subject Classification

Navigation