Skip to main content
Log in

A Note on \(L^{\infty}\)-Bound and Uniqueness to a Degenerate Keller-Segel Model

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this note we establish the uniform \(L^{\infty}\)-bound for the weak solutions to a degenerate Keller-Segel equation with the diffusion exponent \(\frac {2n}{n+2}< m<2-\frac{2}{n}\) under a sharp condition on the initial data for the global existence. As a consequence, the uniqueness of the weak solutions is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savare, G.: Gradient flows. In: Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)

    Google Scholar 

  2. Bedrossian, J.: Large mass global solutions for a class of \(L^{1}\)-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models. Commun. Partial Differ. Equ. (2015, to appear)

  3. Blanchet, A., Carrillo, J.A., Laurencot, P.: Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. 35, 133–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bian, S., Liu, J.-G.: Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent \(m>0\). Commun. Math. Phys. 323, 1017–1070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, A., Laurencot, P.: The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \(\mathbb{R}^{n}\), \(n\geq3\). Commun. Partial Differ. Equ. 38, 658–686 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bian, S., Liu, J.-G., Zou, C.: Ultra-contractivity for Keller-Segel model with diffusion exponent \(m>1-2/d\). Kinet. Relat. Models 7, 9–28 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.A., Lisini, S., Mainini, E.: Uniqueness for Keller-Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34, 1319–1338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L., Liu, J.-G., Wang, J.H.: Multi-dimensional degenerate Keller-Segel system with a new diffusion exponent \(2n/(n+2)\). SIAM J. Math. Anal. 44, 1077–1102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L., Wang, J.H.: Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math. 19, 103–120 (2014)

    MathSciNet  MATH  Google Scholar 

  10. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Egana, G., Mischler, S.: Uniqueness and long time asymptotic for the parabolic-elliptic Keller-Segel equation (2013). arXiv:1310.7771

  12. Kato, T.: On classical solution of the two-dimension non-stationary Euler equation. Arch. Ration. Mech. Anal. 25, 188–200 (1967)

    Article  MATH  Google Scholar 

  13. Kim, I., Yao, Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44, 568–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  16. Liu, J.-G., Yang, R.: Propagation of chaos for the Keller-Segel equations. Preprints

  17. Miura, M., Sugiyama, Y.: On uniqueness theorem on weak solutions to the parabolic-parabolic Keller-Segel system of degenerate and singular types. J. Differ. Equ. 257, 4064–4086 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kagei, Y., Kawakami, T., Sugiyama, Y.: Uniqueness theorem on weak solutions to Keller-Segel system of degenerate and singular types. Preprints

  19. Sugiyama, Y.: Uniqueness and regularity of weak solutions for the 1-D degenerate Keller-Segel systems. Nonlinear Anal. 73, 2230–2244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19, 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yudovich, V.: Nonstationary flow of an ideal incompressible liquid. Ž. Vyčisl. Mat. 3, 1032–1066 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhuan Wang.

Additional information

The work of J.-G. Liu was partially supported by KI-Net NSF RNMS grant No. 1107291 and NSF grant DMS 1514826. Jinhuan Wang is partially supported by National Natural Science Foundation of China (Grant number: 11301243).

Appendix

Appendix

For the convenience of the reader, this section will outline proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1

From (1.2), we know that

$$\begin{aligned} |\nabla c(x)-\nabla c(y)| =& \bigg|-\frac{1}{n\alpha(n)} \int _{\mathbb{R}^{n}} \biggl(\frac{x-z}{|x-z|^{n}}-\frac {y-z}{|y-z|^{n}} \biggr) \rho dz \bigg| \\ \leq& \frac{1}{n\alpha(n)}\int_{\mathbb{R}^{n}} \bigg|\frac {x-z}{|x-z|^{n}}- \frac{y-z}{|y-z|^{n}} \bigg| \rho dz. \end{aligned}$$
(4.1)

Let \(r=|x-y|\). If \(r \ge1\), using the boundedness of \(\|\rho\|_{L^{1}}\) and \(\|\rho\|_{L^{\infty}}\), we know (3.1) is true. Next we need only to consider the case \(0< r<1\). By dividing the region in (4.1), we have

$$\begin{aligned} &|\nabla c(x)-\nabla c(y)| \\ &\quad \leq \frac{1}{n\alpha(n)} \biggl(\int_{|x-z|\geq2r} \bigg| \frac {x-z}{|x-z|^{n}}-\frac{y-z}{|y-z|^{n}} \bigg| \rho dz +\int_{|x-z|< 2r} \bigg|\frac{x-z}{|x-z|^{n}}-\frac{y-z}{|y-z|^{n}}\bigg| \rho dz \biggr)\\ &\quad=:I_{1}+I_{2}. \end{aligned}$$

For \(I_{2}\), from the boundedness of \(\|\rho\|_{L^{\infty}}\), we have

$$\begin{aligned} I_{2} =& \frac{1}{n\alpha(n)}\int_{|x-z|< 2r} \bigg| \frac {x-z}{|x-z|^{n}}-\frac{y-z}{|y-z|^{n}} \bigg| \rho dz \\ \leq&C \|\rho\|_{L^{\infty}} \biggl(\int_{|x-z|< 2r} \frac {1}{|x-z|^{n-1}} dz+\int_{|y-z|< 3r}\frac{1}{|y-z|^{n-1}} dz \biggr) \\ \leq& C\|\rho\|_{L^{1}\cap L^{\infty}} r. \end{aligned}$$

For \(I_{1}\), we have directly

$$\begin{aligned} I_{1} =& \frac{1}{n\alpha(n)}\int_{|x-z|\geq2r}\bigg| \frac {x-z}{|x-z|^{n}}-\frac{y-z}{|y-z|^{n}}\bigg| \rho dz \\ \leq& C \int_{|x-z|\geq2r}\max \biggl\{ \frac{1}{|x-z|^{n}}, \frac {1}{|y-z|^{n}} \biggr\} |x-y| \rho dz \\ \leq& C|x-y| \biggl(\int_{2r\leq|x-z|< 2 }\max \biggl\{ \frac {1}{|x-z|^{n}},\frac{1}{|y-z|^{n}} \biggr\} \rho dz \\ &{}+\int_{|x-z|\geq2 }\max \biggl\{ \frac{1}{|x-z|^{n}}, \frac {1}{|y-z|^{n}} \biggr\} \rho dz \biggr) \\ \leq& C r \biggl(\|\rho\|_{L^{\infty}} \biggl(\int_{2r\leq|x-z|< 2 } \frac{1}{|x-z|^{n}} dz +\int_{r\leq|y-z|< 3 }\frac{1}{|y-z|^{n}} dz \biggr)+M_{0} \biggr) \\ \leq& C\|\rho\|_{L^{1}\cap L^{\infty}} r \biggl(\int_{2r}^{2} \frac {1}{s^{n}}s^{n-1} ds +\int_{r}^{3} \frac{1}{s^{n}} s^{n-1} ds \biggr) + \bar{C}\|\rho\|_{L^{1}\cap L^{\infty}} r \\ \leq& C\|\rho\|_{L^{1}\cap L^{\infty}} r(1-\log r). \end{aligned}$$

In summary, the relation (3.1) holds for any \(r>0\), and a simple computation gives (3.2). □

Proof of Lemma 3.2

Let \(\rho_{s}:=\tau_{s\sharp} \rho\) be the interpolation along the optimal transport map \(\tau_{1}\) between \(\rho\) and \(\bar{\rho}\), where \(\tau_{s}=(1-s)I+s\tau_{1}\). Taking \(\psi\in C_{c}^{\infty}(\mathbb {R}^{n})\), we obtain

$$\begin{aligned} &\frac{d}{ds}\int_{\mathbb{R}^{n}}\psi(x) \rho_{s}(x) dx \\ &\quad=\frac{d}{ds}\int_{\mathbb{R}^{n}}\psi\bigl((1-s)x+s \tau_{1}(x)\bigr) \rho (x) dx \\ &\quad=\int_{\mathbb{R}^{n}}\nabla\psi\bigl((1-s)x+s\tau_{1}(x) \bigr)\cdot\bigl(\tau _{1}(x)-x\bigr) \rho(x) dx \\ &\quad\leq \biggl(\int_{\mathbb{R}^{n}}|\nabla\psi\bigl((1-s)x+s \tau_{1}(x)\bigr)\big|^{2} \rho(x) dx \biggr)^{1/2} \biggl(\int_{\mathbb{R}^{n}}|\tau_{1}(x)-x|^{2} \rho(x) dx \biggr)^{1/2} \\ &\quad\leq \biggl(\int_{\mathbb{R}^{n}}|\nabla\psi(x)|^{2} \rho_{s}(x) dx \biggr)^{1/2}W_{2}(\rho, \bar{\rho}). \end{aligned}$$
(4.2)

Integrating (4.2) respect to \(s\) from 0 to 1, we get

$$\begin{aligned} \int_{\mathbb{R}^{n}} \psi(x) \bigl(\bar{\rho}(x)-\rho \bigr) dx =& \int_{0}^{1} \biggl(\int _{\mathbb{R}^{n}}|\nabla\psi(x)|^{2} \rho_{s}(x) dx \biggr)^{1/2} ds W_{2}(\bar{\rho},\rho) \end{aligned}$$
(4.3)
$$\begin{aligned} \leq& \Bigl(\sup_{s\in[0,1]}\|\rho_{s} \|_{L^{\infty}} \Bigr)^{1/2} \biggl(\int_{\mathbb{R}^{n}}| \nabla\psi(x)|^{2} dx \biggr)^{1/2}W_{2}(\rho, \bar{\rho}). \end{aligned}$$
(4.4)

On the other hand, taking \(\psi(x)\) as a test function in the second equation of (1.1), we have

$$\begin{aligned} \int_{\mathbb{R}^{n}}\psi(x) (\bar{\rho}-\rho) dx =-\int _{\mathbb{R}^{n}}\psi(x) \Delta(\bar{c}- c) dx=\int_{\mathbb {R}^{n}} \nabla\psi(x) \cdot(\nabla\bar{c}-\nabla c) dx. \end{aligned}$$
(4.5)

From (4.3) and (4.5), we can deduce

$$\int_{\mathbb{R}^{n}}\nabla\psi(x) \cdot(\nabla\bar{c}-\nabla c) dx\leq \Bigl(\sup_{s\in[0,1]}\|\rho_{s}\|_{L^{\infty}} \Bigr)^{1/2}\|\nabla\psi(x)\|_{L^{2}}W_{2}(\rho, \bar{\rho}). $$

From [14, Corollary 2.7]), one has \(\|\rho_{s}\|_{L^{\infty}}\leq \max\{\|\bar{\rho}\|_{L^{\infty}}, \|\rho\|_{L^{\infty}}\}\). Thus

$$\|\nabla\bar{c}-\nabla c\|_{L^{2}}\leq \bigl(\max\{\|\bar{\rho}\| _{L^{\infty}}, \|\rho\|_{L^{\infty}}\} \bigr)^{1/2}W_{2}( \rho, \bar{\rho}). $$

 □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., Wang, J. A Note on \(L^{\infty}\)-Bound and Uniqueness to a Degenerate Keller-Segel Model. Acta Appl Math 142, 173–188 (2016). https://doi.org/10.1007/s10440-015-0022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-015-0022-5

Keywords

Navigation