Skip to main content
Log in

Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A diffusive predator-prey model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting subject to the homogeneous Neumann boundary condition is considered. We obtain the local and global stability of constant equilibria by eigenvalue analysis and iteration technique. Choosing some parameter concerning with harvesting as Hopf bifurcation parameter, we conclude the existence of periodic solutions near positive constant equilibrium. Using the normal form and center manifold theory, and numerical simulations, we demonstrate our theoretical results of stability and direction of periodic solutions. We also derive the non-existence and existence of non-constant positive steady states by energy method and degree theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Ent. Sec. Can. 45, 1–60 (1965)

    Article  Google Scholar 

  2. Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  Google Scholar 

  3. Peng, G.J., Jiang, Y.L., Li, C.P.: Bifurcations of a Holling-type II predator-prey system with constant rate harvesting. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19, 2499–2514 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ji, L., Wu, C.: Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11, 2285–2295 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. J. Appl. Math. 65, 737–753 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Huang, J.C., Gong, Y.J., Ruan, S.G.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst., Ser. B 18(8), 2101–2121 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Leard, B., Lewis, C., Rebaza, J.: Dynamics of ratio-dependent predator-prey models with non-constant harvesting. Discrete Contin. Dyn. Syst. Ser 1(2), 303–315 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lenzini, P., Rebaza, J.: Non-constant predator harvesting on ratio-dependent predator-prey models. Appl. Math. Sci. 4(16), 791–803 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey-predator fishery. J. Biol. Dyn. 3, 447–462 (2009)

    Article  MathSciNet  Google Scholar 

  10. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clark, C.W.: Aggregation and fishery dynamics: a theoretical study of schooling and the purse seine tuna fisheries. Fish. Bull. 77, 317–337 (1979)

    Google Scholar 

  12. Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Anal., Real World Appl. 9, 64–79 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nie, L., Teng, Z., Hu, L., Peng, J.: Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Anal., Real World Appl. 11, 1364–1373 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aziz-Alaoui, M.A.: Study of a Leslie-Gower-type tritrophic population. Chaos Solitons Fractals 14, 1275–1293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2002)

    Article  MathSciNet  Google Scholar 

  18. Li, X., Jiang, W.H., Shi, J.P.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model. IMA J. Appl. Math. 78(2), 287–306 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, J., Shi, J.P.: The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses. J. Math. Anal. Appl. 405(2), 618–630 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhou, J.: Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes. J. Math. Anal. Appl. 389(2), 1380–1393 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhou, J., Kim, C.G., Shi, J.P.: Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete Contin. Dyn. Syst. 34(9), 3875–3899 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang, W.S.: Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response. Nonlinear Anal., Real World Appl. 14(3), 1323–1330 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, M.X., Pang, P.Y.H.: Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model. Appl. Math. Lett. 21, 1215–1220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hassard, B., Kazarinoff, N., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  25. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chang, X.Y., Wei, J.J.: Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Math. Biosci. Eng. 10, 979–996 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pang, P.Y.H., Wang, M.X.: Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nirenberg, L.: Topics in Nonlinear Functional Analysis. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  30. Pang, P.Y.H., Wang, M.X.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88(3), 135–157 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for some helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Wang.

Additional information

This work was supported by NSFC Grant 11371113.

Appendix:  Direction of Hopf Bifurcation

Appendix:  Direction of Hopf Bifurcation

In this appendix, we compute \(\operatorname {Re}c_{1}(h_{H}^{j})\). We adopt the same notations of [25]. When \(h=h_{H}^{j}\), we set

$$\begin{aligned} q&=\cos\frac{jx}{l}(a_j,b_j)^{\mathrm{T}}=\cos \frac{jx}{l} \biggl(1,- \biggl(\rho+\frac{d_2 j^2}{l^2} \biggr) \frac{1}{\tilde{B}}+\frac {\omega_0}{\tilde{B}}i \biggr)^{\mathrm{T}}, \\ q^*&=\cos\frac{jx}{l}\bigl(a_j^*,b_j^* \bigr)^{\mathrm{T}}=\cos\frac {jx}{l} \biggl(\frac{1}{l\pi}+ \frac{1}{\omega_0 l\pi} \biggl(\frac {d_2j^2}{l^2}+\rho\biggr)i,\frac{\tilde{B}}{l\pi\omega_0}i \biggr)^{\mathrm{T}}, \end{aligned}$$

where

$$\omega_0=\sqrt{ \bigl(-{d^2_2j^4}/{l^4}-{2d_2j^2 \rho}/{l^2}-\rho(\rho+{\tilde{B}}/{\beta} ) \bigr)}. $$

When j≠0, we get

$$g_{20}=\bigl\langle q^*,Q_{qq}\bigr\rangle =0,\qquad g_{11}=\bigl\langle q^*,Q_{q\bar{q}}\bigr\rangle =0,\qquad g_{02}= \bigl\langle q^*,Q_{\bar{q}\bar{q}}\bigr\rangle =0. $$

So it remains to calculate

$$g_{21}=2\bigl\langle q^*,Q_{w_{11}q}\bigr\rangle +\bigl\langle q^*,Q_{w_{20}\bar{q}}\bigr\rangle +\bigl\langle q^*,C_{qq\bar{q}}\bigr\rangle . $$

It is straightforward to compute that

$$\begin{aligned} c_j&=f_{uu}+2f_{uv}b_j,\qquad d_j=g_{uu}+2g_{uv}b_j+g_{vv}b_j^2, \\ e_j&=f_{uu}+f_{uv}(\overline{ b_j}+b_j),\qquad f_j=g_{uu}+g_{uv}( \overline{b_j}+b_j)+g_{vv}|b_j|^2, \\ g_j&=f_{uuu}+f_{uuv}(2b_j+\overline{ b_j}),\qquad h_j=g_{uuu}+g_{uuv}(2b_j+ \overline{b_j})+g_{uvv}\bigl(2|b_j|^2+b_j^2 \bigr), \end{aligned}$$

with

$$\begin{aligned} \left\{ \begin{array}{@{}rcl@{}} f_{uu}&=&-2+\frac{2\alpha m }{\beta(m+\hat{u}_1(\tilde{h}) )^2}+\frac{2c\tilde{h}}{ (c+\hat{u}_1(\tilde{h}) )^3},\qquad f_{uv}=-\frac{\alpha m}{ (m+\hat{u}_1(\tilde{h}) )^2},\\ g_{uu}&=&-\frac{2\rho}{\beta(m+\hat{u}_1(\tilde{h}) )},\qquad g_{uv}=\frac{2\rho}{m+\hat{u}_1(\tilde{h})},\qquad g_{vv}=-\frac {2\rho\beta}{m+\hat{u}_1(\tilde{h})},\\ f_{uuu}&=&-\frac{6\alpha m }{\beta(m+\hat{u}_1(\tilde{h}) )^3}-\frac{6c\tilde{h}}{ (c+\hat{u}_1(\tilde{h}) )^4},\qquad f_{uuv}=\frac{2\alpha m}{ (m+\hat{u}_1(\tilde{h}) )^2},\\ g_{uuu}&=&\frac{6\rho}{\beta(m+\hat{u}_1(\tilde{h}) )^2},\qquad g_{uuv}=-\frac{4\rho}{ (m+\hat{u}_1(\tilde{h}) )^2},\\ g_{uvv}&=&\frac{2\rho\beta}{ (m+\hat{u}_1(\tilde{h}) )^2}, \qquad f_{vv}=f_{uvv}=f_{vvv}=g_{vvv}=0. \end{array} \right. \end{aligned}$$

From computations, it follows that

$$\begin{aligned} H_{20}& \begin{aligned}[t] &=Q_{qq}-\bigl\langle q^*,Q_{qq}\bigr\rangle q-\bigl\langle \overline{q^*},Q_{qq}\bigr\rangle \overline{q} \\ &= \begin{cases}{ -G_3-{2\omega_0f_{uv}i}/{\tilde{B}}\choose {G_2\omega_0}/{\tilde{B}}+{G_3\tilde{A}}/{\tilde{B}}+{(2G_2-G_1)\omega _0i}/{\tilde{B}}} ,&j=0,\\ {c_j\choose d_j} \cos^2\frac{j}{l}x,&j\neq0, \end{cases} \end{aligned} \\ H_{11}&=Q_{q\bar{q}}-\bigl\langle q^*,Q_{q\bar{q}}\bigr\rangle q-\bigl\langle \overline{q^*},Q_{q\bar{q}}\bigr\rangle \bar{q} = \begin{cases} { -G_3\choose{\tilde{A}}G_3/{\tilde{B}}},&j=0,\\ {e_j\choose f_j} \cos^2\frac{j}{l}x,&j\neq0, \end{cases} \\ \bigl\langle q^*,Q_{qq}\bigr\rangle &= \begin{cases} f_{uu}+G_1+ ({2\omega_0 f_{uv}}/{\tilde{B}}-G_2 )i, &j=0,\\ 0,&j\neq0, \end{cases} \\ \bigl\langle \overline{q^*},Q_{qq}\bigr\rangle &= \begin{cases}f_{uu}-G_1-4{\tilde{A}}f_{uv}/{\tilde{B}}+ ({2\omega_0 f_{uv}}/{\tilde{B}}+G_2 )i, &j=0,\\ 0,&j\neq0, \end{cases} \\ \bigl\langle q^*,Q_{q\bar{q}}\bigr\rangle &= \begin{cases}G_3-G_2 i,&j=0,\\ 0,&j\neq0, \end{cases} \\ \bigl\langle \overline{q^*},Q_{q\bar{q}}\bigr\rangle &= \begin{cases}G_3+G_2 i,&j=0,\\ 0,&j\neq0, \end{cases} \\ [2i\omega_0 I-\tilde{L}_{2j}]^{-1}&=( \alpha_1+i\alpha_2)^{-1} \begin{pmatrix} 2\omega_0i+{4d_2 j^2}/{l^2}+\rho&\tilde{B} \\ {\rho}/{\beta}& 2\omega_0i-{(d_2-3d_1)j^2}/{l^2}-\rho \end{pmatrix} , \\ [2i\omega_0 I-\tilde{L}_{0}]^{-1}&=( \alpha_3+i\alpha_4)^{-1} \begin{pmatrix} 2\omega_0i+\rho& \tilde{B} \\ {\rho}/{\beta}& 2\omega_0i-{(d_2+d_1)j^2}/{l^2}-\rho \end{pmatrix} , \\ {\tilde{L}_{2j}}^{-1}&=\frac{1}{\alpha_5} \begin{pmatrix} -{4d_2j^2}/{l^2}-\rho&-\tilde{B} \\ -{\rho}/{\beta}& {(d_2-3d_1)j^2}/{l^2}+\rho \end{pmatrix} ,\\ {\tilde{L}_{0}}^{-1}&= \frac{1}{\alpha_6} \begin{pmatrix}-\rho&-\tilde{B} \\ -{\rho}/{\beta}&{(d_2+d_1)j^2}/{l^2}+\rho \end{pmatrix} , \end{aligned}$$

where

$$\begin{aligned} \alpha_1&=-4\omega_0^2- \biggl( \frac{(d_2-3d_1)j^2}{l^2}+\rho\biggr) \biggl(\frac {4d_2j^2}{l^2}+\rho\biggr)- \frac{\rho\tilde{B}}{\beta },\qquad\alpha_2=\frac{6\omega_0j^2(d_1+d_2)}{l^2}, \\ \alpha_3&=-4\omega_0^2- \biggl( \frac{(d_2+d_1)j^2}{l^2}+\rho\biggr)\rho-\frac{\rho\tilde{B}}{\beta},\qquad \alpha_4=- \frac{2\omega_0j^2(d_1+d_2)}{l^2}, \\ \alpha_5&=\frac{(12d_1d_2-4d_2^2)j^4}{l^4}-\frac{(5d_2-3d_1)j^2\rho }{l^2}- \rho^2-\frac{\rho\tilde{B}}{\beta},\\ \alpha_6&=- \frac{\rho j^2(d_1+d_2)}{l^2}-\rho^2-\frac{\rho\tilde{B}}{\beta}, \\ G_1&=2g_{uv}-\frac{2\tilde{A} g_{vv}}{\tilde{B}}, \\ G_2&=\frac{f_{uu}\tilde{A}}{\omega_0}-\frac{2{\tilde{A}}^2f_{uv}}{\tilde{B}\omega_0}+\frac{\tilde{B} g_{uu}}{\omega_0}- \frac {2\tilde{A} g_{uv}}{\omega_0}+ \frac{{\tilde{A}}^2g_{vv}}{\tilde{B}\omega_0}-\frac{\omega _0g_{vv}}{\tilde{B}}, \\ G_3&=f_{uu}-\frac{2\tilde{A} f_{uv}}{\tilde{B}}. \end{aligned}$$

Then

$$w_{20}= \begin{pmatrix}\tau_1 \\ \tau_2 \end{pmatrix} \cos\frac{2j}{l}x+ \begin{pmatrix} \tau_3 \\ \tau_4 \end{pmatrix} ,\qquad w_{11}= \begin{pmatrix}\sigma_1 \\ \sigma_2 \end{pmatrix} \cos\frac{2j}{l}x+ \begin{pmatrix} \sigma_3 \\ \sigma_4 \end{pmatrix} , $$

where

$$\begin{aligned} \tau_1&=\frac{1}{2}(\alpha_1+i \alpha_2)^{-1} \biggl[ \biggl(2i\omega_0+ \frac{4d_2 j^2}{l^2}+\rho\biggr)c_j+d_j\tilde{B} \biggr], \\ \tau_2&=\frac{1}{2}(\alpha_1+i \alpha_2)^{-1} \biggl[\frac{\rho }{\beta}c_j+d_j \biggl(2i\omega_0- \frac{(d_2-3d_1)j^2}{l^2}-\rho\biggr) \biggr], \\ \tau_3&=\frac{1}{2}(\alpha_1+i \alpha_2)^{-1} \bigl[(2i\omega_0+ \rho)c_j+\tilde{B} d_j \bigr], \\ \tau_4&=\frac{1}{2}(\alpha_1+i \alpha_2)^{-1} \biggl[\frac{\rho }{\beta}c_j+d_j \biggl(2i\omega_0- \frac{(d_2+d_1)j^2}{l^2}-\rho\biggr) \biggr], \\ \sigma_1&=\frac{1}{2\alpha_5} \biggl[ \biggl(\frac{4d_2j^2}{l^2}+ \rho\biggr)e_j+\tilde{B} f_j \biggr], \\ \sigma_2&=\frac{1}{2\alpha_5} \biggl[\frac{\rho}{\beta}e_j- \biggl(\rho+\frac{(d_2-3d_1)j^2}{l^2} \biggr)f_j \biggr], \\ \sigma_3&=\frac{1}{2\alpha_6} (\rho e_j+\tilde{B} f_j ), \\ \sigma_4&=\frac{1}{2\alpha_6} \biggl[\frac{\rho}{\beta}e_j- \biggl(\rho+\frac{(d_2+d_1)j^2}{l^2} \biggr)f_j \biggr]. \end{aligned}$$

Hence,

$$2\operatorname{Re}\bigl(c_{1}\bigl(h_H^j\bigr) \bigr)=\operatorname{Re}(g_{21})=2\operatorname{Re}\bigl\langle q^*,Q_{w_{11}q}\bigr\rangle +\operatorname{Re}\bigl\langle q^*,C_{qq\bar{q}} \bigr\rangle +\operatorname{Re}\bigl\langle q^*,Q_{w_{20}\bar{q}}\bigr\rangle , $$

where

$$\begin{aligned} \bigl\langle q^*,Q_{w_{20}\bar{q}}\bigr\rangle &=\frac{l\pi}{4} \bigl\{ {\bar{a}_j}^* \bigl[f_{uu}(\tau_1+2 \tau_3)+f_{uv}\bigl({\bar{b}}_j( \tau_1+2\tau_3)+(\tau_1+2\tau_3) \bigr) \bigr] \\ &\quad+{\bar{b}_j}^* \bigl[g_{uu}(\tau_1+2 \tau_3)+g_{uv} \bigl({\bar{b}}_j( \tau_1+2\tau_3)+\tau_2+2\tau_4 \bigr)+g_{vv}{\bar{b}}_j(\tau_2+2 \tau_4) \bigr] \bigr\} , \\ \bigl\langle q^*,Q_{w_{11}q}\bigr\rangle &=\frac{l\pi}{4} \bigl\{ {\bar{a}_j}^* \bigl[f_{uu}(\sigma_1+2 \sigma_3)+f_{uv}\bigl({\bar{b}}_j(\sigma _1+2\sigma_3)+(\sigma_1+2 \sigma_3)\bigr) \bigr] \\ &\quad+{\bar{b}_j}^* \bigl[g_{uu}(\sigma_1+2 \sigma_3)+g_{uv}\bigl({\bar{b}}_j( \sigma_1+2\sigma_3)+\sigma_2+2 \sigma_4\bigr)+g_{vv}{\bar{b}}_j( \sigma_2+2\sigma_4) \bigr] \bigr\} , \\ \bigl\langle q^*,C_{qq\bar{q}}\bigr\rangle &=\frac{3l\pi}{8} \bigl({\bar{a}_j}^*g_j+{\bar{b}_j}^*h_j \bigr), \\ \operatorname{Re}\bigl\langle q^*,Q_{w_{20}\bar{q}}\bigr\rangle &=\frac{1}{4} \biggl[f_{uu} \bigl(\tau^R_1+2 \tau^R_{3} \bigr) +f_{uv} \bigl(b^R_j \bigl(\tau_1^R+2\tau^R_3 \bigr)+b^I_j\bigl(\tau^I_1+2 \tau^I_3\bigr) +\bigl(\tau^R_2+2 \tau^R_4\bigr) \bigr) \\ &\quad+ \biggl(\frac{d_2 j^2}{l^2\omega_0}+\frac{\rho}{\omega _0} \biggr) \bigl(f_{uu}\bigl(\tau_1^I+2 \tau_3^I\bigr)+ f_{uv} \bigl( \tau_2^I+2\tau_4^I+ b^R_j\bigl(\tau_1^I+2 \tau_3^I\bigr) \\ &\quad-b^I_j\bigl( \tau_1^R+2\tau_3^R\bigr) \bigr) \bigr) +\frac{\tilde{B}}{\omega_0} \bigl(g_{uu}\bigl(\tau_1^I+2 \tau_3^I\bigr) +g_{uv} \bigl(\bigl( \tau_2^I+2\tau_4^I \bigr)\\ &\quad-b^I_j\bigl(\tau_1^R+2 \tau_3^R\bigr) +b^R_j\bigl( \tau_1^R+2\tau_3^R\bigr) \bigr) \bigr) \\ &\quad+\frac{\tilde{B}}{\omega_0} \bigl(g_{vv}\bigl(b^R_j \bigl(\tau_2^I+2\tau_4^I\bigr) -b^I_j\bigl(\tau_2^R+2 \tau_4^R\bigr)\bigr) \bigr) \biggr], \\ \operatorname{Re}\bigl\langle q^*,Q_{w_{11}q}\bigr\rangle &= \frac{1}{4} \biggl[f_{uu}(\sigma_1+2 \sigma_3)+f_{uv} \bigl( (\sigma_1+2\sigma _3)+b^R_j(\sigma_1+2 \sigma_3) \bigr) \\ &\quad+ \biggl(\frac{d_2 j^2}{l^2\omega_0}+\frac{\rho}{\omega_0} \biggr)g_{uv} b^I_j(\sigma_1+2\sigma_3)\\ &\quad+ \frac{\tilde{B}}{\omega_0} \bigl(g_{uv}b^I_j( \sigma_1+2\sigma_3)+g_{vv}b^I_j (\sigma_2+2\sigma_4) \bigr) \biggr], \\ \operatorname{Re}\bigl\langle q^*,C_{qqq}\bigr\rangle &=\frac{3}{8} \biggl(f_{uuu}-\frac{2(f_{uuv}+f_{uuv})({d_2 j^2}+\rho l^2)}{\tilde{B} l^2}+g_{uuv} \biggr), \end{aligned}$$

where \(\xi^{R}=\operatorname{Re} \xi\), and \(\xi^{I}=\operatorname{Im} \xi\).

Likewise, when j=0, we derive \(\tilde{A}=\rho\), and

$$\begin{aligned} \operatorname{Re}\bigl(c_{1}\bigl(h_H^0\bigr) \bigr)&=\operatorname{Re}\bigl\langle q^*,Q_{w_{11}q}\bigr\rangle + \frac{1}{2}\operatorname{Re}\bigl\langle q^*,C_{qq\bar{q}}\bigr\rangle + \frac{1}{2}\operatorname{Re}\bigl\langle q^*,Q_{w_{20}\bar{q}}\bigr\rangle \\ &\quad+ \operatorname{Re} \biggl(\frac{ i w_0}{2}\bigl\langle q^*,Q_{qq}\bigr\rangle \cdot\bigl\langle q^*,Q_{q\bar{q}}\bigr\rangle \biggr) \\ &=\frac{\beta}{2\rho(\beta\rho+\tilde{B})} \biggl[2(f_{uv}+g_{vv}) \biggl( \frac{\rho}{\beta}+\frac{\rho^2}{\tilde{B}} \biggr)G_3 +(f_{uuu}+g_{uuv}) \biggl(1-\frac{2\rho}{\tilde{B}} \biggr) \biggr] \\ &\quad+\frac{\beta}{6\rho(\beta\rho+\tilde{B})} \biggl(f_{uu}-\frac {\rho}{\tilde{B}}f_{uv}- \frac{\rho}{\tilde{B}}-g_{uv} \biggr) \bigl(-4\omega_0^2G_3+ \omega_0G_2 \bigr)\\ &\quad- \biggl(\frac{2\omega _0f_{uv}}{\tilde{B}}-G_2 \biggr)G_3\omega_0 \\ &\quad+\frac{\beta}{6\rho(\beta\rho+\tilde{B})} \biggl\{ \biggl(\frac{\omega_0}{\tilde{B}}f_{uv}- \frac{\rho^2}{\tilde{B}\omega _0}+\frac{\tilde{B}}{\omega_0}g_{uu} \biggr) \biggl(\omega _0(2G_2-G_1)\\ &\quad-\frac{2\omega_0(4\omega_0^2+\rho)f_{uv}}{\tilde{B}} \biggr) \\ &\quad+f_{uv} \biggl[\frac{4 f_{uv}\omega_0^2}{\tilde{B}} \biggl(1+\frac{\rho}{\beta} \biggr)+G_2 \biggl(\frac{\rho\omega_0}{\beta }+\frac{\rho^2\omega_0}{\beta}- \frac{4\omega_0^3}{\tilde{B}} \biggr) \biggr] \\ &\quad+f_{uv} \biggl[G_3 \biggl(\frac{\rho^2-\rho}{\tilde{B}} \biggr)-\frac{2\omega_0^2}{\tilde{B}} (2G_2-G_1 ) \biggr] \\ &\quad+ \biggl(\frac{\rho}{\omega_0}+g_{uv} \biggr) \biggl(- \frac {4\omega_0\rho G_3}{\beta}-\frac{4\omega_0\rho G_2}{\tilde{B}}+\frac {2\omega_0\rho G_3}{\tilde{B}} \biggr) \biggr\} + \frac{\omega _0G_2(f_{uu}+G_1)}{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, M. Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting. Acta Appl Math 140, 147–172 (2015). https://doi.org/10.1007/s10440-014-9983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9983-z

Keywords

Navigation