Skip to main content
Log in

A Regularity Criterion for the Navier-Stokes Equations in Terms of One Directional Derivative of the Velocity

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider the regularity criterion for the three dimensional incompressible Navier-Stokes equations in terms of one directional derivative of the velocity. The result shows that if weak solution u satisfies

$$\begin{aligned} \partial_{3}u\in L^{\frac{2}{1-r}}\bigl(0,T;\dot{M}^{p,\frac{3}{r}}\bigl( \mathbb{R}^{3}\bigr)\bigr) \end{aligned}$$

with 0<r<1 and \(2\leq p\leq\frac{3}{r}\), then u is regular on \((0,T]\times\mathbb{R}^{3}\). Here, \(\dot{M}^{p,\frac{3}{r}}(\mathbb{R}^{3})\) is the homogeneous Morrey-Campanato space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In paper [5], Cao and Wu obtained that if \(\partial_{3} u\in L^{\frac{2}{1-r}}(0,T;L^{\frac{3}{r}}(\mathbb{R}^{3}))\) with 0≤r<1, then the solutions of the MHD equations is smooth on (0,T]. It is easy to verify that their regularity result still holds for the NS equations. In fact, when we let \(p=\frac{3}{r}\) in (2.3), then there holds \(\dot{M}^{\frac{3}{r},\frac{3}{r}}(\mathbb{R}^{3})=L^{\frac {3}{r}}(\mathbb{R}^{3})\), and the assumption (2.3) becomes that of [5].

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \(\mathbb{R}^{n}\). Chin. Ann. Math., Ser. B 16, 407–412 (1995)

    MATH  Google Scholar 

  3. Cao, C.: Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin. Dyn. Syst., Ser. A 26, 1141–1151 (2010)

    Article  MATH  Google Scholar 

  4. Cao, C., Titi, E.S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. arXiv:1005.4463 (2010)

  5. Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chemin, J.Y., Zhang, P.: On the critical on component regularity for 3-D Navier-Stokes system. arXiv:1310.6442v1 [math.AP] 24 Oct. 2013

  7. Dong, H., Du, D.: The Navier-Stokes equations in the critical Lebesgue space. Commun. Math. Phys. 292, 811–827 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gala, S.: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space. Nonlinear Differ. Equ. Appl. 17, 181–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gala, S.: On the regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space. Nonlinear Anal., Real World Appl. 12, 2142–2150 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, C.: Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron. J. Differ. Equ. 29, 1–13 (2002)

    Google Scholar 

  13. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato, T.: Strong L p-solutions of the Navier-Stokes equations in \(\mathbb{R}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier-Stokes equations. Math. Z. 235, 173–194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48, 065203 (2007)

    Article  MathSciNet  Google Scholar 

  17. Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem. Chapman and Hall/CRC, London (2002)

    Book  MATH  Google Scholar 

  18. Lemarié-Rieusset, P.G.: The Navier-Stokes equations in the critical Morrey-Campanato space. Rev. Mat. Iberoam. 23, 897–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pokorný, M.: On the results of He concerning the smoothing of solutions to the Navier-Stokes equations. Electron. J. Differ. Equ. 11, 1–8 (2013)

    Google Scholar 

  21. Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  22. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sohr, H.: A generalization of Serrin’s regularity criterion for the Navier-Stokes equations. Quad. Math. 10, 321–347 (2002)

    MathSciNet  Google Scholar 

  24. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolutions equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)

    Article  MATH  Google Scholar 

  25. Temam, R.: Navier-Stokes Equations. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  26. Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms ot the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002)

    MATH  MathSciNet  Google Scholar 

  27. Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl. 84, 1496–1514 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in \(\mathbb{R}^{N}\). Z. Angew. Math. Phys. 57, 384–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou, Y., Gala, S.: Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61, 193–199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their careful reading of the manuscript, and for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Liu.

Additional information

The author is supported by the National Natural Science Foundation of China (11326155, 11401202), the Hunan Provincial Natural Science Foundation of China (13JJ4043), and the Scientific Research Fund of Hunan Provincial Education Department (14B117).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q. A Regularity Criterion for the Navier-Stokes Equations in Terms of One Directional Derivative of the Velocity. Acta Appl Math 140, 1–9 (2015). https://doi.org/10.1007/s10440-014-9975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9975-z

Keywords

Mathematics Subject Classification (2010)

Navigation