Skip to main content

Advertisement

Log in

Forces of Infection Allowing for Backward Bifurcation in an Epidemic Model with Vaccination and Treatment

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider an epidemic model for the dynamics of a vaccine-preventable disease, which incorporates the treatment and an imperfect vaccine given to susceptible individuals. We show that in spite of the simple structure of the model, a backward bifurcation may always occur if the treatment rate is above a threshold value. This occurs regardless of the specific form of the force of infection, which is only required to be infinitesimal of the same order of the size of the infectious compartment I, as I→0. This includes many commonly used functionals, as the linear, the monotone saturating Michaelis-Menten and the non-monotone force of infection used to represent the ‘psychological effect’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexander, M.E., Moghadas, S.M.: Bifurcation analysis of an SIRS epidemic model with generalized incidence. SIAM J. Appl. Math. 65, 1794–1816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  3. Arino, J., McCluskey, C.C., van den Driessche, P.: Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64, 260–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brauer, F.: Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298, 418–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. Lecture Notes in Mathematics. Mathematical Biosciences Subseries, vol. 1945. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  6. Buonomo, B., Lacitignola, D.: On the dynamics of an SEIR epidemic model with a convex incidence rate. Ric. Mat. 57, 261–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buonomo, B., Lacitignola, D.: On the backward bifurcation of a vaccination model with nonlinear incidence. Nonlinear Anal. Model. Control 16, 30–46 (2011)

    MathSciNet  Google Scholar 

  8. Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomath., vol. 97. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  9. Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978)

    Article  MathSciNet  Google Scholar 

  10. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New York (1999)

    MATH  Google Scholar 

  12. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dushoff, J., Huang, W., Castillo-Chavez, C.: Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garba, A.M., Gumel, A.B., Abu Bakar, M.R.: Backward bifurcation in dengue transmission dynamics. Math. Biosci. 215, 11–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  16. Gumel, A.B., Moghadas, S.M.: A qualitative study of a vaccination model with non-linear incidence. Appl. Math. Comput. 143, 409–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadeler, K.P., van den Driessche, P.: Backward bifurcation in epidemic control. Math. Biosci. 146, 15–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kribs-Zaleta, C.M., Martcheva, M.: Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177/178, 317–332 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kribs-Zaleta, C.M., Velasco-Hernandez, J.X.: A simple vaccination model with multiple endemic states. Math. Biosci. 164, 183–201 (2000)

    Article  MATH  Google Scholar 

  21. Liu, Y., Sun, Z.: Backward bifurcation in an HIV model with two target cells. In: Proceedings of the 29th Chinese Control Conference, pp. 1397–1400 (2010), art. no. 5573562

    Google Scholar 

  22. Reluga, T.C., Medlock, J., Perelson, A.S.: Backward bifurcations and multiple equilibria in epidemic models with structured immunity. J. Theor. Biol. 252, 155–165 (2008)

    Article  Google Scholar 

  23. Sharomi, O., Gumel, A.B.: Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis. J. Math. Anal. Appl. 356, 96–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharomi, O., Podder, C.N., Gumel, A.B., Elbasha, E.H., Watmough, J.: Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math. Biosci. 210, 436–463 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. van den Driessche, P., Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201, 58–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewer for the useful suggestions. One of the authors (B.B.) has been partially supported by University of Naples Federico II, FARO 2010 Research Program (Finanziamento per l’Avvio di Ricerche Originali).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Lacitignola.

Appendix

Appendix

Here we recall the result obtained in [10]. Consider a general system of ODEs with a parameter ϕ:

$$ \dot{x}=f(x,\phi); \quad f: R^{n} \times R \rightarrow R^{n}, \quad f \in C^{2}\bigl(R^{n} \times R\bigr). $$
(8)

Without loss of generality, we assume that x=0 is an equilibrium for (8).

Theorem 2

Assume:

  1. (A1)

    A=D x f(0,0) is the linearization matrix of system (8) around the equilibrium x=0 with ϕ evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;

  2. (A2)

    Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue.

    Let f k denotes the k-th component of f and,

Then the local dynamics of system (8) around x=0 are totally determined by a and b.

  1. (i)

    a>0, b>0. When ϕ<0, with |ϕ|≪1, x=0 is locally asymptotically stable and there exists a positive unstable equilibrium; when 0<ϕ≪1, x=0 is unstable and there exists a negative and locally asymptotically stable equilibrium;

  2. (ii)

    a<0, b<0. When ϕ<0, with |ϕ|≪1, x=0 is unstable; when 0<ϕ≪1, x=0 is locally asymptotically stable and there exists a positive unstable equilibrium;

  3. (iii)

    a>0, b<0. When ϕ<0, with |ϕ|≪1, x=0 is unstable and there exists a locally asymptotically stable negative equilibrium; when 0<ϕ≪1, x=0 is stable and a positive unstable equilibrium appears;

  4. (iv)

    a<0, b>0. When ϕ changes from negative to positive, x=0 changes its stability from stable to unstable, and a negative unstable equilibrium becomes positive and locally asymptotically stable.

Proof

(see [10]) # □

Remark 1

Taking into account of Remark 1 in [10], we observe that if the equilibrium of interest in Theorem A.1 is a non negative equilibrium x 0, then the requirement that w is non negative is not necessary. When some components in w are negative, one can still apply the theorem provided that w(j)>0 whenever x 0(j)=0; instead, if x 0(j)>0, then w(j) need not to be positive. Here w(j) and x 0(j) denote the j-th component of w and x 0 respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonomo, B., Lacitignola, D. Forces of Infection Allowing for Backward Bifurcation in an Epidemic Model with Vaccination and Treatment. Acta Appl Math 122, 283–293 (2012). https://doi.org/10.1007/s10440-012-9743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9743-x

Keywords

Navigation