Skip to main content
Log in

Critical Points of the Optimal Quantum Control Landscape: A Propagator Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Numerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator (Rabitz et al. in Science 303(5666):1998–2001, 2004). For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give sufficient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of “way-points” that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albertini, F., D’Alessandro, D.: Notions of controllability for multilevel bilinear quantum mechanical systems. IEEE Trans. Autom. Control 48(8), 1399–1403 (2003)

    Article  MathSciNet  Google Scholar 

  2. Altafini, C.: Controllability of quantum mechanical systems by root space decomposition of su(N). J. Math. Phys. 43(5), 2051–2062 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M., Gerber, G.: Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)

    Article  Google Scholar 

  4. Bardeen, C., Yakovlev, V.V., Wilson, K.R., Carpenter, S.D., Weber, P.M., Warren, W.S.: Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997)

    Article  Google Scholar 

  5. Bardeen, C.J., Yakovlev, V.V., Squier, J.A., Wilson, K.R.: Quantum control of population transfer in green flourescent protein by using chirped femtosecond pulses. J. Am. Chem. Soc. 120, 13,023–13,027 (1998)

    Article  Google Scholar 

  6. D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  7. Girardeau, M.D., Schirmer, S.G., Leahy, J.V., Koch, R.M.: Kinematical bounds on optimization of observables for quantum systems. Phys. Rev. A 58(4), 2684–2689 (1998). doi:10.1103/PhysRevA.58.2684

    Article  Google Scholar 

  8. Ho, T.S., Rabitz, H.: Why do effective quantum controls appear easy to find? J. Photochem. Photobiol. A, Chem. 180(3), 226–240 (2006). http://www.sciencedirect.com/science/article/B6TGY-4JRT33W-7/2/e487a7c6bfb086abc26371fbbe2d3e6c

    Article  Google Scholar 

  9. Ho, T.S., Dominy, J., Rabitz, H.: Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79(1), 013,422 (2009). doi:10.1103/PhysRevA.79.013422

    Article  MathSciNet  Google Scholar 

  10. Hornung, T., Meier, R., Motzkus, M.: Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain. Chem. Phys. Lett. 326, 445–453 (2000)

    Article  Google Scholar 

  11. Judson, R., Rabitz, H.: Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500 (1992)

    Article  Google Scholar 

  12. Kunde, J., Baumann, B., Arlt, S., Morier-Genoud, F., Siegner, U., Keller, U.: Adaptive feedback control of ultrafast semiconductor nonlinearities. Appl. Phys. Lett. 77, 924 (2000)

    Article  Google Scholar 

  13. Levis, R.J., Menkir, G., Rabitz, H.: Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001)

    Article  Google Scholar 

  14. Rabitz, H.A., Hsieh, M.M., Rosenthal, C.M.: Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004). doi:10.1126/science.1093649. http://www.sciencemag.org/cgi/content/abstract/303/5666/1998

    Article  Google Scholar 

  15. Turinici, G., Rabitz, H.: Wavefunction controllability in quantum systems. J. Phys. A 36, 2565–2576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weinacht, T., Ahn, J., Bucksbaum, P.: Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999)

    Article  Google Scholar 

  17. Wu, R., Dominy, J., Ho, T.S., Rabitz, H.: Singularities of quantum control landscapes. arXiv:0907.2354 [quant-ph] (2009). http://arxiv.org/abs/0907.2354

Download references

Acknowledgements

GT acknowledges support from the ANR-06-BLAN-0052 program and the MicMac project of INRIA Rocquencourt. TSH and HR were supported by U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Turinici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, TS., Rabitz, H. & Turinici, G. Critical Points of the Optimal Quantum Control Landscape: A Propagator Approach. Acta Appl Math 118, 49–56 (2012). https://doi.org/10.1007/s10440-012-9677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9677-3

Keywords

Mathematics Subject Classification (2000)

Navigation