Skip to main content
Log in

Homogenization of Nonlinear Degenerate Non-monotone Elliptic Operators in Domains Perforated with Tiny Holes

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The paper deals with the homogenization problem beyond the periodic setting, for a degenerated nonlinear non-monotone elliptic type operator on a perforated domain Ωε in ℝN with isolated holes. While the space variable in the coefficients a 0 and a is scaled with size ε (ε>0 a small parameter), the system of holes is scaled with ε 2 size, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The homogenization problem is formulated in terms of the general, so-called deterministic homogenization theory combining real homogenization algebras with the Σ-convergence method. We present a new approach based on the Besicovitch type spaces to solve deterministic homogenization problems, and we obtain a very general abstract homogenization results. We then illustrate this abstract setting by providing some concrete applications of these results to, e.g., the periodic homogenization, the almost periodic homogenization, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinb. Sect. A 126, 297–342 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Allaire, G., Murat, F.: Homogenization of the Neumann problem with non isolated holes. Asymptot. Anal. 7, 81–95 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Amaziane, B., Goncharenko, M., Pankratov, L.: Homogenization of a convection-diffusion equation in perforated domains of non-periodic structure with a weak adsorption. Z. Angew. Math. Phys. 58, 592–611 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Besicovitch, A.S.: Almost Periodic Functions. Dover, New York (1954)

    Google Scholar 

  5. Boccardo, L., Murat, F., Puel, J.P.: Existence de solutions non bornées pour certaines équations quasi-linéaires. Port. Math. 41, 507–534 (1982)

    MATH  MathSciNet  Google Scholar 

  6. Buscaglia, G., Jai, M.: A new numerical scheme for non uniform homogenized problems: application to the non linear Reynolds compressible equation. Math. Probl. Eng. 7(4), 355–378 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buscaglia, G., Jai, M.: Homogenization of the generalized Reynolds equation for ultra-thin gas films and its resolution by FEM. J. Tribol. 126, 547–552 (2004)

    Article  Google Scholar 

  8. Cardone, G., Donato, P., Gaudiello, A.: A compactness result for elliptic equations with subquadratic growth in perforated domains. Nonlin. Anal. 32, 830–842 (1996)

    MathSciNet  Google Scholar 

  9. Casado Diaz, J., Gayte, I.: A derivation theory for generalized Besicovitch spaces and its application for partial differential equations. Proc. R. Soc. Edinb. A 132, 283–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Casado Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458, 2925–2946 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiado’ Piat, V., Defranceschi, A.: Asymptotic behaviour of quasi-linear problems with Neumann boundary conditions on perforated domains. Appl. Anal. 36, 65–87 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Math. and Its Applications, vol. 17. Oxford Univ. Press, London (1999)

    MATH  Google Scholar 

  13. Cioranescu, D., Murat, F.: Un terme étrange venu d’ailleurs. In: Nonlin. PDE Appl. Collège de France Seminar, vol. 2, pp. 98–138. Pittman, London (1982). Vol. 3, pp. 154–178

    Google Scholar 

  14. Cioranescu, D., Saint Jean Paulin, J.: Homogenization in open sets with holes. J. Math. Appl. 71, 590–607 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Donato, P., Sgambati, L.: Homogenization for some nonlinear problems in perforated domains. Rev. Math. Pures Appl. 15, 17–38 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Eberlein, W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949)

    MATH  MathSciNet  Google Scholar 

  17. Fournier, J.F.F., Stewart, J.: Amalgams of L p and q. Bull. Am. Math. Soc. 13, 1–21 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. He, J.-H.: Variational principle for non-Newtonian lubrication: Rabinowitsch fluid model. Appl. Math. Comput. 157, 281–286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jai, M.: Homogenization and two-scale convergence of the compressible Reynolds lubrication equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk surface. RAIRO Modél. Math. Anal. Numér. 29, 199–233 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  21. Lukkassen, D., Nguetseng, G., Nnang, H., Wall, P.: Reiterated homogenization of nonlinear elliptic operators in a general deterministic setting. J. Funct. Spaces Appl. 7, 121–152 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2, 35–86 (2002)

    MATH  MathSciNet  Google Scholar 

  23. Nguetseng, G.: Mean value on locally compact abelian groups. Acta Sci. Math. 69, 203–221 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Nguetseng, G.: Homogenization structures and applications I. Z.  Anal. Anwen. 22, 73–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nguetseng, G.: Homogenization structures and applications II. Z. Anal. Anwen. 23, 482–508 (2004)

    MathSciNet  Google Scholar 

  26. Nguetseng, G.: Homogenization in perforated domains beyond the periodic setting. J. Math. Anal. Appl. 289, 608–628 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nguetseng, G.: Almost periodic homogenization: asymptotic analysis of a second order elliptic equation (Preprint)

  28. Nguetseng, G., Nnang, H.: Homogenization of nonlinear monotone operators beyond the periodic setting. Electr. J. Differ. Equ. 2003, 1–24 (2003)

    MathSciNet  Google Scholar 

  29. Nguetseng, G., Woukeng, J.L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electr. J. Differ. Equ. 2004, 1–23 (2004)

    MathSciNet  Google Scholar 

  30. Nguetseng, G., Woukeng, J.L.: Σ-convergence of nonlinear parabolic operators. Nonlin. Anal. 66, 968–1004 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oleinik, O.A., Shaposnikova, T.A.: On the biharmonic equation in a domain perforated along manifolds of small dimension. Differ. Urav. 32, 335–362 (1996)

    Google Scholar 

  32. Woukeng, J.L.: Deterministic homogenization of non-linear non-monotone degenerate elliptic operators. Adv. Math. 219, 1608–1631 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Woukeng, J.L.: Σ-convergence of nonlinear monotone operators in perforated domains with holes of small size. Appl. Math. (to appear)

  34. Woukeng, J.L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales. Ann. Mat. Pura Appl. (2009). doi:10.1007/s10231-0112-y

    MATH  Google Scholar 

  35. Yosida, K.: Functional Analysis. Springer, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Louis Woukeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woukeng, J.L. Homogenization of Nonlinear Degenerate Non-monotone Elliptic Operators in Domains Perforated with Tiny Holes. Acta Appl Math 112, 35–68 (2010). https://doi.org/10.1007/s10440-009-9552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9552-z

Keywords

Mathematics Subject Classification (2000)

Navigation