Skip to main content
Log in

Homogenization of Linear Parabolic Equations with a Certain Resonant Matching Between Rapid Spatial and Temporal Oscillations in Periodically Perforated Domains

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this article, we study homogenization of a parabolic linear problem governed by a coefficient matrix with rapid spatial and temporal oscillations in periodically perforated domains with homogeneous Neumann data on the boundary of the holes. We prove results adapted to the problem for characterization of multiscale limits for gradients and very weak multiscale convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Chiado Piat, V., Dal Maso, G., Percivale, D. An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal., 18(5): 481–496 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6): 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire, G., Briane, M. Multi-scale convergence and reiterated homogenization. Proc. Roy. Soc. Edinburgh Sect. A, 126(2): 297–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Murat, F. Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal., 7(2): 81–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Douglas, J., Hornung, U. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal., 21(4): 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Lions, J.L., Papanicolaou, G. Asymptotic analysis for periodic structures, studies in mathematics and its applications. North-Holland, Amsterdam, 1978

    MATH  Google Scholar 

  7. Casado-Díaz, J., Gayte, I. A general compactness result and its application to the two-scale convergence of almost periodic functions. C.R. Acad.Sci. Paris Sér. I Math., 323(4): 329–334 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Cioranescu, D., Saint Jean Paulin, J. Homogenization in open sets with holes. J. Math. Anal. Appl., 71(2): 590–607 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cioranescu, D., Damlamian, A., Donato, G., Griso, G., Zaki, R. The periodic unfolding method in domains with holes. SIAM J. Math. Anal., 44(2): 718–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombini, F., Spagnolo, S. Sur la convergence de solutions d equations paraboliques [On the convergence of solutions of parabolic equations]. J. Math. Pures Appl., (9) 56(3): 263–305 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Conca, C. On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl., (9) 64(2): 31–75 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Conca, C., Donato, P. Nonhomogeneous Neumann problems in domains with small holes. RAIRO Modél. Math. Anal. Numér., 22(4): 561–607 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donato, P., Nabil, A. Homogenization and correctors for the heat equation in perforated domains. Ricerche di Matematica., 2(1): 115–144 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Donato, P., Nabil, A. Homogenization of semilinear parabolic equations in perforated domains. Chinese Ann. Math. Ser B., 25(2): 143–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donato, P., Saint Jean Paulin, J. Homogenization of the Poisson equation in a porous medium with double periodicity. Japan J. Appl. Math., 10(2): 333–349 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Douanla, H., Tetsadjio, E. Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes. Electron. J Differential Equations, (2017)(59): 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Douanla, H., Woukeng, J. L. Homogenization of reaction-diffusion equations in fractured porous media. Electron J Differential Equations., 2015(253): 1–23 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Flodén, L., Holmbom, A., Olsson, M., Persson, J. Very weak multiscale convergence. Appl. Math. Lett., 23(10): 1170–1173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Flodén, L., Holmbom, A., Olsson Lindberg, M., Persson, J. Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math., Vol. 2014 (2014) p.???

  20. Flodén, L., Olsson, M. Homogenization of some parabolic operators with several time scales. Appl. Math., 52(5): 431–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griffel, D.H. Applied Functional Analysis. Ellis Horwood Limited, Publishers-Chichester, John Wiley and Sons. New York, Toronto, 1981

    MATH  Google Scholar 

  22. Holmbom, A. Homogenization of parabolic equations: an alternative approach and some corrector-type results. Appl. Math., 42(5): 321–343 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holmbom, A., Silfver, J., Svanstedt, N., Wellander, N. On two-scale convergence and related sequential compactness topics. Appl. Math., 51(3): 247–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lukassen, D., Nguetseng, G., Wall, P. Two-scale convergence. Int. J. Pure Appl. Math., 2(1): 33–81 (2002)

    MathSciNet  Google Scholar 

  25. Mascarenhas, M.L., Toader, A-M. Scale convergence in homogenization. Numer. Funct. Anal. Optim., 22(1-2): 127–158 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nandakumaran, A.K. Two-scale Convergence and Homogenization. International Workshop on Multi-Scale Analysis and Homogenization, June 28-July 9, Bangalore, 2010

    Google Scholar 

  27. Nechvatal, L. Alternative approaches to the two-scale convergence. Appl. Math., 49(2): 97–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguetseng, G. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3): 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguetseng, G., Woukeng, J.L. Σ-convergence of nonlinear parabolic operators. Nonlinear Anal., 66(4): 968–1004 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguetseng, G., Svanstedt, N. Σ-convergence. Banach J. Math. Anal., 5(1): 101–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pak, H.C. Geometric two-scale convergence on forms and its applications to maxwell’s equations. Proc. Roy. Soc. Edinburgh Sect. A, 135(1): 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oleinik, O.A., Shaposhnikova, T.A. On the homogenization of the Poisson equation in partially perforated domain with the arbitrary density of cavities and mixed conditions on their boundary. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7(3): 129–146 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Persson, J. Homogenization of some selected elliptic and parabolic problems employing suitable generalized modes of two-scale convergence. Mid Sweden University Licentiate thesis 45, Mid Sweden University, 2010

    Google Scholar 

  34. Persson, J. Selected Topics in Homogenization. Mid Sweden University Doctoral Thesis 127, Östersund, 2012

    Google Scholar 

  35. Persson, J. Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., 57(3): 191–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Piatnitski, A., Rybalko, V. Homogenization of boundary value problems for monotone operators in perforated domains with rapidly oscillating boundary conditions of fourier type. J. Math. Scien., 177(1): 109–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Silfver, J. G-convergence and homogenization involving operators compatible with two-scale convergence. PhD thesis, Mid Sweden University Doctoral Thesis 23, 2007

    MATH  Google Scholar 

  38. Temam, R. Navier-Stokes Equation. North-Holland, Amsterdam, 1984

    MATH  Google Scholar 

  39. Woukeng, J.L. Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales. Ann. Mat. Pura Appl., (4) 189(3): 357–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Lobkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkova, T. Homogenization of Linear Parabolic Equations with a Certain Resonant Matching Between Rapid Spatial and Temporal Oscillations in Periodically Perforated Domains. Acta Math. Appl. Sin. Engl. Ser. 35, 340–358 (2019). https://doi.org/10.1007/s10255-019-0810-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-019-0810-1

Keywords

Navigation