Skip to main content
Log in

Utility Maximization with Convex Constraints and Partial Information

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a market model where stock returns satisfy a stochastic differential equation with an unobservable, stochastic drift process. The investor’s objective is to maximize expected utility of terminal wealth, but investment decisions are based on the knowledge of the stock prices only. The performance of the resulting highly risky strategies can be improved considerably by imposing convex constraints covering e.g. short selling restrictions. Using filtering methods we transform the model to a model with full information. We provide a verification result and show how results on optimization under convex constraints can be used directly for a continuous time Markov chain model for the drift. In special cases we derive representations of the optimal trading strategies, including a stochastic volatility model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bäuerle, N., Rieder, U.: Portfolio-optimization with unobservable Markov-modulated drift process. J. Appl. Probab. 42, 362–378 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cvitanić, J.: Optimal trading under constraints. In: Financial Mathematics, Bressanone, 1996. Lecture Notes in Mathematics, vol. 1656, pp. 123–190. Springer, New York (1997)

    Chapter  Google Scholar 

  3. Cvitanić, J., Karatzas, I.: Convex duality in constrained portfolio optimization. Ann. Appl. Probab. 2, 767–818 (1992)

    MathSciNet  Google Scholar 

  4. Detemple, J.B., Rindisbacher, M.: Closed-form solutions for optimal portfolio selection with stochastic interest rate and investment constraints. Math. Financ. 15, 539–568 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. El Karoui, N., Quenez, M.C.: Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33, 29–66 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Elliott, R.J.: New finite-dimensional filters and smoothers for noisily observed Markov chains. IEEE Trans. Inf. Theory 39, 265–271 (1993)

    Article  MATH  Google Scholar 

  7. Elliott, R.J., Rishel, R.W.: Estimating the implicit interest rate of a risky asset. Stoch. Process. Appl. 49, 199–206 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Genotte, G.: Optimal portfolio choice under incomplete information. J. Financ. 41, 733–749 (1986)

    Article  Google Scholar 

  9. Haussmann, U.G., Sass, J.: Optimal terminal wealth under partial information for HMM stock returns. In: Yin G., Zhang Q. (eds.) Mathematics of Finance, Proceedings of an AMS-IMS-SIAM Summer Conference, Utah, 22–26 June 2003. AMS Contemporary Mathematics, vol. 351, pp. 171–185 (2004)

    Google Scholar 

  10. Kallianpur, G.: Stochastic Filtering Theory. Springer, New York (1980)

    MATH  Google Scholar 

  11. Karatzas, I., Ocone, D.L., Li, J.: An extension of Clark’s formula. Stoch. Stoch. Rep. 37, 127–131 (1991)

    MATH  MathSciNet  Google Scholar 

  12. Karatzas, I., Zhao, X.: Bayesian adaptive portfolio optimization. In: Cvitanic, J. Jouini, E., Muselia, M. (eds.) Handbooks in Mathematical Finance: Option Pricing Interest Rates and Risk Management, pp. 632–669. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  13. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuwana, Y.: Certainty equivalence and logarithmic utilities in consumption/investment problems. Math. Financ. 5, 297–310 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lakner, P.: Optimal trading strategy for an investor: the case of partial information. Stoch. Process. Appl. 76, 77–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martinez, M., Rubenthaler, S., Tanré, E.: Misspecified filtering theory applied to optimal allocation problems in finance. NCCR-FINRISK Working Paper Series 278 (2005)

  17. Merton, R.C.: Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  18. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971); Merton, R.C.: J. Econ. Theory 6, 161–185 (1973), Erratum

    Article  MathSciNet  Google Scholar 

  19. Ocone, D.L., Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios. Stoch. Stoch. Rep. 34, 187–220 (1991)

    MathSciNet  Google Scholar 

  20. Øksendal, B.: The value of information in stochastic control and finance. Pure Mathematics Preprint Series, University of Oslo, No. 11 (2005)

  21. Pham, H., Quenez, M.-C.: Optimal portfolio in partially observed stochastic volatility models. Ann. Appl. Probab. 11, 210–238 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Sass, J.: Portfolio optimization under partial information and convex constraints in a hidden Markov model. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research Proceedings, 2005, pp. 223–228. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Sass, J., Haussmann, U.G.: Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain. Financ. Stoch. 8, 553–577 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Sass.

Additional information

Supported by the Austrian Science Fund, FWF grant P17947-N12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sass, J. Utility Maximization with Convex Constraints and Partial Information. Acta Appl Math 97, 221–238 (2007). https://doi.org/10.1007/s10440-007-9124-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9124-z

Keywords

Mathematics Subject Classification (2000)

Navigation