Skip to main content

Advertisement

Log in

The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Campana, V., et al. Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J. Mater. Sci. 25(10):2445–2461, 2014.

    CAS  Google Scholar 

  2. Liu, X., and P. X. Ma. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32(3):477–486, 2004.

    Article  PubMed  Google Scholar 

  3. Meena, L. K., et al. Polymeric microgels for bone tissue engineering applications—A review. Int. J. Polym. Mater. Polym. Biomater. 2019. https://doi.org/10.1080/00914037.2019.1570512.

    Article  Google Scholar 

  4. Martinez, D. A., et al. Prolonged wait time is associated with increased mortality for Chilean waiting list patients with non-prioritized conditions. BMC Public Health. 19(1):233, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  5. He, F.-L., et al. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater. Sci. Eng. C. 86:18–27, 2018.

    Article  CAS  Google Scholar 

  6. Farrokhi, M., et al. Artificial intelligence in cancer care: From diagnosis to prevention and beyond. Kindle. 3(1):1–149, 2023.

    Google Scholar 

  7. Ameri, A., et al. Diverse activity of miR-150 in tumor development: Shedding light on the potential mechanisms. Cancer Cell Int. 23(1):261, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jammalamadaka, U., and K. Tappa. Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9(1):22, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., et al. Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: A population-based cross-sectional study. Aging Clin. Exp. Res. 35(10):2039–2049, 2023.

    Article  PubMed  Google Scholar 

  10. Ofudje, E. A., et al. Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications. Adv. Powder Technol. 29(1):1–8, 2018.

    Article  CAS  Google Scholar 

  11. John, A., et al. physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Adv. 5(49):39232–39244, 2015.

    Article  CAS  Google Scholar 

  12. Tavakolinejad, Z., Y. Mohammadi Kamalabadi, and A. Salehi. Comparison of the shear bond strength of orthodontic composites containing silver and amorphous tricalcium phosphate nanoparticles: An ex vivo study. J. Dent. (Shiraz). 24(3):285–292, 2023.

    PubMed  Google Scholar 

  13. Koons, G. L., M. Diba, and A. G. Mikos. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5(8):584–603, 2020.

    Article  CAS  Google Scholar 

  14. Jin, H.-H., et al. In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 51(5):1079–1085, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, S., et al. lncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. Aging Dis. 11(5):1058–1068, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beheshtizadeh, N., et al. 3D printing of complicated GelMA-coated alginate/tri-calcium silicate scaffold for accelerated bone regeneration. Int. J. Biol. Macromol. 229:636–653, 2023.

    Article  CAS  PubMed  Google Scholar 

  17. Camilo, C. C., et al. Bone response to porous alumina implants coated with bioactive materials, observed using different characterization techniques. J. Appl. Biomater. Funct. Mater. 15(3):e223–e235, 2017.

    CAS  PubMed  Google Scholar 

  18. Weng, W., et al. Review of zirconia-based biomimetic scaffolds for bone tissue engineering. J. Mater. Sci. 56(14):8309–8333, 2021.

    Article  CAS  Google Scholar 

  19. Sari, M., et al. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater. Res. 25(1):2, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, T., et al. Customized design 3D printed PLGA/calcium sulfate scaffold enhances mechanical and biological properties for bone regeneration. Front. Bioeng. Biotechnol. 10:874931, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Natalia, D. P., et al. Hydroxyapatite/tricalcium phosphate (HA/beta-TCP) scaffold combined with bone and endothelial cells as a potential candidate for oral and maxillofacial bone regeneration. J. Dent. 121:103960, 2022.

    Article  Google Scholar 

  22. Fu, Q. Chapter 15-Bioactive glass Scaffolds for bone tissue engineering. In: Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, edited by G. Kaur. Sawston: Woodhead Publishing, 2019, pp. 417–442.

    Chapter  Google Scholar 

  23. Qu, H., et al. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 9(45):26252–26262, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, S., et al. A multiaxial bionic ankle based on series elastic actuation with a parallel spring. IEEE Trans. Ind. Electron. 2023. https://doi.org/10.1109/TIE.2023.3310041.

    Article  Google Scholar 

  25. Wen, Y., et al. 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomater. Sci. 5(9):1690–1698, 2017.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., et al. Variations in deep iliac circumflex artery perforator chimeric flap design for single-stage customized-reconstruction of composite bone and soft-tissue defect. J. Plast. Reconstr. Aesthet. Surg. 87:273–283, 2023.

    Article  PubMed  Google Scholar 

  27. Kolan, K. C., et al. Near-field electrospinning of a polymer/bioactive glass composite to fabricate 3D biomimetic structures. Int. J. Bioprinting. 5(1):163, 2019.

    Article  CAS  Google Scholar 

  28. Ferreira, A. M., et al. Collagen for bone tissue regeneration. Acta Biomater. 8(9):3191–3200, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Ranganathan, S., K. Balagangadharan, and N. Selvamurugan. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int. J. Biol. Macromol. 133:354–364, 2019.

    Article  CAS  PubMed  Google Scholar 

  30. Farokhi, M., et al. Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol. Adv. 36(1):68–91, 2018.

    Article  CAS  PubMed  Google Scholar 

  31. Demirtaş, T. T., G. Irmak, and M. Gümüşderelioğlu. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 9(3):035003, 2017.

    Article  PubMed  Google Scholar 

  32. Hernández-González, A. C., L. Téllez-Jurado, and L. M. Rodríguez-Lorenzo. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 229:115514, 2020.

    Article  PubMed  Google Scholar 

  33. Coletta, D. J., et al. Bone regeneration mediated by a bioactive and biodegradable extracellular matrix-like hydrogel based on elastin-like recombinamers. Tissue Eng. Part A. 23(23–24):1361–1371, 2017.

    Article  CAS  PubMed  Google Scholar 

  34. Honarpardaz, A., et al. Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J. Biomed. Mater. Res. Part A. 107(1):38–48, 2019.

    Article  CAS  Google Scholar 

  35. Mondal, S., et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int. 46(3):3443–3455, 2020.

    Article  CAS  Google Scholar 

  36. Seraji, A. A., F. Goharpey, and J. KhademzadehYeganeh. Highly crystallized and tough polylactic acid through addition of surface modified cellulose nanocrystals. J. Appl. Polym. Sci. 139(37):e52871, 2022.

    Article  CAS  Google Scholar 

  37. Yeo, T., et al. Promoting bone regeneration by 3D-printed poly (glycolic acid)/hydroxyapatite composite scaffolds. J. Ind. Eng. Chem. 94:343–351, 2021.

    Article  CAS  Google Scholar 

  38. Davarpanah Jazi, R., et al. Fabrication and characterization of electrospun poly lactic-co-glycolic acid/zeolite nanocomposite scaffolds using bone tissue engineering. J. Bioactive Compat. Polym. 33(1):63–78, 2018.

    Article  CAS  Google Scholar 

  39. Hernandez, I., A. Kumar, and B. Joddar. A bioactive hydrogel and 3D printed polycaprolactone system for bone tissue engineering. Gels. 3(3):26, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ali, M. G., et al. Dual nanofiber scaffolds composed of polyurethane-gelatin/nylon 6-gelatin for bone tissue engineering. Colloids Surf. A. 597:124817, 2020.

    Article  CAS  Google Scholar 

  41. Gopanna, A., et al. Polyethylene and polypropylene matrix composites for biomedical applications. In: Materials for Biomedical Engineering, Amsterdam: Elsevier, 2019, pp. 175–216.

    Chapter  Google Scholar 

  42. Bhattarai, D. P., et al. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes. 8(3):62, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  43. La Mantia, F., et al. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 145:79–92, 2017.

    Article  Google Scholar 

  44. Gan, J., et al. Dynamic failure of 3D printed negative-stiffness meta-sandwich structures under repeated impact loadings. Compos. Sci. Technol. 234:109928, 2023.

    Article  CAS  Google Scholar 

  45. Xu, J., et al. Dynamic response of chain mail fabrics with variable stiffness. Int. J. Mech. Sci. 264:108840, 2024.

    Article  Google Scholar 

  46. Domingues, R. M., et al. Fabrication of anisotropically aligned nanofibrous scaffolds based on natural/synthetic polymer blends reinforced with cellulose nanocrystals for tendon tissue engineering. Front. Bioeng. Biotechnol. 2016. https://doi.org/10.3389/conf.FBIOE.2016.01.01963.

    Article  Google Scholar 

  47. Jamali, S., Y. Zare, and K. Y. Rhee. Modeling of mechanical behaviors and interphase properties of polymer/nanodiamond composites for biomedical products. J. Mater. Res. Technol. 19:2750–2758, 2022.

    Article  CAS  Google Scholar 

  48. Li, H., et al. Abrasion performance and failure mechanism of fiber yarns based on molecular segmental differences. J. Eng. Fibers Fabrics. 19:15589250241228264, 2024.

    Article  Google Scholar 

  49. Du, X., S. Fu, and Y. Zhu. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J. Mater. Chem. B. 6(27):4397–4412, 2018.

    Article  CAS  PubMed  Google Scholar 

  50. Riau, A. K., et al. Functionalization of the polymeric surface with bioceramic nanoparticles via a novel, nonthermal dip coating method. ACS Appl. Mater. Interfaces. 8(51):35565–35577, 2016.

    Article  CAS  PubMed  Google Scholar 

  51. Xu, J., et al. Study of the bending properties of variable stiffness chain mail fabrics. Compos. Struct. 322:117369, 2023.

    Article  Google Scholar 

  52. Kim, G., et al. Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun. 29(19):1577–1581, 2008.

    Article  CAS  Google Scholar 

  53. Huang, B., et al. Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Addit. Manuf. 36:101452, 2020.

    CAS  Google Scholar 

  54. Naghieh, S., et al. Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment. Mater. Des. 133:128–135, 2017.

    Article  CAS  Google Scholar 

  55. Dong, J., et al. A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsyst. Technol. 26(6):1847–1861, 2020.

    Article  CAS  Google Scholar 

  56. Ghanad, M., et al. Single-step solution combustion synthesis of porous 1393–B3 glass powders and structural characterization via solid-state NMR spectroscopy. Ceram. Int. 49(9, Part A):14689–14701, 2023.

    Article  CAS  Google Scholar 

  57. Akrami, N., et al. Microstructural properties and in vitro dissolution of microporous bioactive 13–93B3 glass powders synthesized via solution combustion synthesis. J. Non-Crystall. Solids. 615:122425, 2023.

    Article  CAS  Google Scholar 

  58. Park, S. H., et al. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 4(5):1198–1207, 2008.

    Article  CAS  PubMed  Google Scholar 

  59. Kardan-Halvaei, M., et al. Fabrication of 3D-printed hydroxyapatite using freeze-drying method for bone regeneration: RVE and finite element simulation analysis. J. Mater. Res. Technol. 24:8682–8692, 2023.

    Article  CAS  Google Scholar 

  60. Moghadam, M. Z., et al. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method. J. Mech. Behav. Biomed. Mater. 69:115–127, 2017.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, S., et al. Fabrication and characterization of polylactic acid/polycaprolactone composite macroporous micro-nanofiber scaffolds by phase separation. New J. Chem. 44(40):17382–17390, 2020.

    Article  CAS  Google Scholar 

  62. Li, J., et al. 3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibacterial and bone regeneration. Appl. Mater. Today. 17:206–215, 2019.

    Article  Google Scholar 

  63. Sola, A., et al. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater. Sci. Eng. C. 96:153–165, 2019.

    Article  CAS  Google Scholar 

  64. Huang, Z.-M., et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15):2223–2253, 2003.

    Article  CAS  Google Scholar 

  65. Wang, Y., et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 13(1):5056, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bürck, J., et al. Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. J. Mol. Struct. 1151:73–80, 2018.

    Article  Google Scholar 

  67. Jarusuwannapoom, T., et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 41(3):409–421, 2005.

    Article  CAS  Google Scholar 

  68. Geng, X., O.-H. Kwon, and J. Jang. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 26(27):5427–5432, 2005.

    Article  CAS  PubMed  Google Scholar 

  69. Henriques, C., et al. A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J. Nanosci. Nanotechnol. 9(6):3535–3545, 2009.

    Article  CAS  PubMed  Google Scholar 

  70. Babilotte, J., et al. 3D printed polymer–mineral composite biomaterials for bone tissue engineering: fabrication and characterization. J. Biomed. Mater. Res. Part B. 107(8):2579–2595, 2019.

    Article  CAS  Google Scholar 

  71. Kondiah, P. P., et al. Recent progress in 3D-printed polymeric scaffolds for bone tissue engineering. In: Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering, Amsterdam: Elsevier, 2020, pp. 59–81.

    Chapter  Google Scholar 

  72. Yu, G. Z., et al. Biomimetic rotated lamellar plywood motifs by additive manufacturing of metal alloy scaffolds for bone tissue engineering. ACS Biomater. Sci. Eng. 3(4):648–657, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim, H.-K., et al. 3D-printed ceramic bone scaffolds with variable pore architectures. Int. J. Mol. Sci. 21(18):6942, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bruyas, A., et al. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity. J. Mater. Res. 33(14):1948–1959, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Le Guéhennec, L., et al. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J. Biomed. Mater. Res. Part A. 108(3):412–425, 2020.

    Article  Google Scholar 

  76. Winarso, R., et al. Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: A review. Heliyon. 8:e11701, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hameed, P., et al. Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Progr. Addit. Manuf. 6:455–469, 2021.

    Article  Google Scholar 

  78. Chi, C.-Y., et al. Preparation and in-vitro evaluation of Fe2O3-doped DP-bioglass in combination with 3D-printing and selective laser sintering process (3DP-SLS) for alveolar bone augmentation. Ceram. Int. 47(9):12725–12734, 2021.

    Article  CAS  Google Scholar 

  79. Kuah, K. X., et al. Analysis of the corrosion performance of binder jet additive manufactured magnesium alloys for biomedical applications. J. Magn. Alloys. 10(5):1296–1310, 2022.

    Article  CAS  Google Scholar 

  80. Turnbull, G., et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Mater. 3(3):278–314, 2018.

    Article  Google Scholar 

  81. Yakout, M., et al. The selection of process parameters in additive manufacturing for aerospace alloys. Int. J. Adv. Manuf. Technol. 92(5):2081–2098, 2017.

    Article  Google Scholar 

  82. Moore, T. A. Evaluating the augmentation of army resupply with additive manufacturing in a deployed environment. Defense AR J. 26(4):424–425, 2018.

    Google Scholar 

  83. Leal, R., et al. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 92(5):1671–1676, 2017.

    Article  Google Scholar 

  84. Park, J. H., H.-K. Jung, and J. R. Lee. Development and evaluation of fall impact protection pads using additive manufacturing. Materials. 12(20):3440, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vanderploeg, A., S.-E. Lee, and M. Mamp. The application of 3D printing technology in the fashion industry. Int. J. Fashion Des. Technol. Educ. 10(2):170–179, 2017.

    Article  Google Scholar 

  86. Du Plessis, A., et al. Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing. Virtual Phys. Prototyp. 13(4):266–281, 2018.

    Article  Google Scholar 

  87. Yi, L., et al. Application and progress of bioactive scaffolds in bone tissue engineering. Chin. J. Tissue Eng. Res. 23(6):963, 2019.

    Google Scholar 

  88. Zhou, X., et al. Recent advances in additive manufacturing technology for bone tissue engineering scaffolds. Int. J. Adv. Manuf. Technol. 108:1–16, 2020.

    Article  Google Scholar 

  89. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today. 16(12):496–504, 2013.

    Article  CAS  Google Scholar 

  90. Yu, J., et al. Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers. 12(12):2958, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karamian, E., et al. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique. Nanomed. J. 4(3):177–183, 2017.

    CAS  Google Scholar 

  92. Malekshahi, Y., et al. Effects of prantschimgin and grandivitin from Ferulago macrocarpa on VEGF, MMP9, MMP2 and research of binding modes using computational methods. Int. Pharm. Acta. 1(1):92–93, 2018.

    Google Scholar 

  93. Yan, F., et al. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology. AIP Adv.4(3):031321, 2014.

    Article  Google Scholar 

  94. Seraji, A. A., and A. A. Bajgholi. Dual role of nanoclay in the improvement of the in-situ nanofibrillar morphology in polypropylene/polybutylene terephthalate nanocomposites. J. Ind. Text. 52:15280837221133570, 2022.

    Article  CAS  Google Scholar 

  95. Nadaf, A., et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv. 12(37):23808–23828, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Patel, M., H. J. Hong, and W.-G. Koh. Micropatterned fibrous scaffolds for biomedical application. J. Ind. Eng. Chem. 80:729–738, 2019.

    Article  CAS  Google Scholar 

  97. Fuh, Y.-K., et al. The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning. Mater. Sci. Eng. C. 62:879–887, 2016.

    Article  CAS  Google Scholar 

  98. He, X.-X., et al. Near-field electrospinning: Progress and applications. J. Phys. Chem. C. 121(16):8663–8678, 2017.

    Article  CAS  Google Scholar 

  99. Luo, G., et al. High aspect-ratio 3D microstructures via near-field electrospinning for energy storage applications. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). 2016. IEEE.

  100. Chang, C., K. Limkrailassiri, and L. Lin. Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93(12):123111, 2008.

    Article  Google Scholar 

  101. Krysiak, Z. J., et al. Hierarchical composite meshes of electrospun PS microfibers with PA6 nanofibers for regenerative medicine. Materials. 13(8):1974, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ren, K., et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater. Sci. Eng. C. 78:324–332, 2017.

    Article  CAS  Google Scholar 

  103. Shitole, A. A., et al. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J. Mater. Sci. 30(5):1–17, 2019.

    CAS  Google Scholar 

  104. Li, Y., C. Liao, and S. C. Tjong. Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering. Nanomaterials. 9(7):952, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Singh, Y. P., et al. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 31(6):781–803, 2020.

    Article  CAS  PubMed  Google Scholar 

  106. Shadamarshan, R. P., et al. Fabrication of PCL/PVP electrospun fibers loaded with trans-anethole for bone regeneration in vitro. Colloids Surf. B. 171:698–706, 2018.

    Article  Google Scholar 

  107. Hou, J., et al. Biomimetic growth of hydroxyapatite on electrospun CA/PVP core–shell nanofiber membranes. Polymers. 10(9):1032, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhu, L., D. Luo, and Y. Liu. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 12(1):6, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reznikov, N., R. Shahar, and S. Weiner. Bone hierarchical structure in three dimensions. Acta Biomater. 10(9):3815–3826, 2014.

    Article  PubMed  Google Scholar 

  110. Zhu, L., D. Luo, and Y. Liu. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 12(1):1–15, 2020.

    Article  Google Scholar 

  111. Yu, Y., et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 13(1):4241, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, T., et al. 3D Printing of hot dog-like biomaterials with hierarchical architecture and distinct bioactivity. Adv. Sci. 6(19):1901146, 2019.

    Article  CAS  Google Scholar 

  113. Dalton, P. D., et al. Electrospinning and additive manufacturing: converging technologies. Biomater. Sci. 1(2):171–185, 2013.

    Article  CAS  PubMed  Google Scholar 

  114. Kim, M. S., and G. Kim. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr. Polym. 114:213–221, 2014.

    Article  CAS  PubMed  Google Scholar 

  115. Song, Z. H., et al. Effects of PEMFs on Osx, Ocn, TRAP, and CTSK gene expression in postmenopausal osteoporosis model mice. Int. J. Clin. Exp. Pathol. 11(3):1784–1790, 2018.

    PubMed  PubMed Central  Google Scholar 

  116. Yavari, Z., et al. Stoichiometry influence of oxide support on the catalytic efficiency of nano-palladium towards CH3OH electrooxidation. Chem. Papers. 75(6):2317–2329, 2021.

    Article  CAS  Google Scholar 

  117. Wang, Y., et al. Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials. 171:118–132, 2018.

    Article  CAS  PubMed  Google Scholar 

  118. Wang, C., et al. 3D printing of bone tissue engineering scaffolds. Bioactive Mater. 5(1):82–91, 2020.

    Article  Google Scholar 

  119. Zhang, J., et al. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater. 10(3):1035–1049, 2014.

    Article  PubMed  Google Scholar 

  120. Wang, Q., et al. Multi-scale surface treatments of titanium implants for rapid osseointegration: A review. Nanomaterials. 10(6):1244, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Salehi, N., and A. Salehi. Contact lichenoid reaction in the oral cavity: A comprehensive focus on amalgam restoration. World J. Adv. Res. Rev. 18:134–144, 2023.

    Article  CAS  Google Scholar 

  122. Codrea, C. I., et al. Advances in osteoporotic bone tissue engineering. J. Clin. Med. 10(2):253, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Herath, B., et al. Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects. Mater. Des. 212:110224, 2021.

    Article  CAS  Google Scholar 

  124. Xu, Y., et al. Unraveling of advances in 3D-printed polymer-based bone Scaffolds. Polymers. 14:566, 2022. https://doi.org/10.3390/polym14030566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zieliński, P. S., et al. 3D printing of bio-instructive materials: Toward directing the cell. Bioactive Mater. 19:292–327, 2023.

    Article  Google Scholar 

  126. Loh, Q. L., and C. Choong. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B. 19(6):485–502, 2013.

    Article  CAS  Google Scholar 

  127. Kai, D., et al. Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology. 23(9):095705, 2012.

    Article  PubMed  Google Scholar 

  128. Yoon, Y., et al. 3D bioprinted complex constructs reinforced by hybrid multilayers of electrospun nanofiber sheets. Biofabrication. 11(2):025015, 2019.

    Article  CAS  PubMed  Google Scholar 

  129. Liu, J., et al. Injectable, tough and adhesive zwitterionic hydrogels for 3D-printed wearable strain sensors. Chem. Eng. J. 475:146340, 2023.

    Article  CAS  Google Scholar 

  130. Yu, S., et al. Anisotropic microstructure dependent mechanical behavior of 3D-printed basalt fiber-reinforced thermoplastic composites. Composites B. 224:109184, 2021.

    Article  CAS  Google Scholar 

  131. Kurokawa, N., S. Kimura, and A. Hotta. Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. J. Appl. Polym. Sci. 135(24):45429, 2018.

    Article  Google Scholar 

  132. Wang, Y., et al. Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis. Friction. 11(8):1371–1394, 2023.

    Article  CAS  Google Scholar 

  133. Amorim, P., et al. Insights on shear rheology of inks for extrusion-based 3D bioprinting. Bioprinting. 22:e00129, 2021.

    Article  Google Scholar 

  134. Zhang, Y., et al. Applications of electrospun scaffolds with enlarged pores in tissue engineering. Biomater. Sci. 10(6):1423–1447, 2022.

    Article  CAS  PubMed  Google Scholar 

  135. Pattanashetti, N. A., et al. Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. J. Polym. Res. 27(4):1–13, 2020.

    Article  Google Scholar 

  136. Dhandayuthapani, B., et al. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci. 2011:1–19, 2011.

    Article  Google Scholar 

  137. Lin, K.-F., et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl. Mater. Interfaces. 8(11):6905–6916, 2016.

    Article  CAS  PubMed  Google Scholar 

  138. Vaezi, M., et al. Extrusion-based 3D printing technologies for 3D scaffold engineering. In: Functional 3D Tissue Engineering Scaffolds, Amsterdam: Elsevier, 2018, pp. 235–254.

    Chapter  Google Scholar 

  139. Lee, S. C., et al. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem. Rev. 120(19):10834–10886, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fu, Q., E. Saiz, and A. P. Tomsia. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 7(10):3547–3554, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Qu, H. Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 24:101024, 2020.

    Article  CAS  Google Scholar 

  142. Khedri, M., et al. Artificial intelligence deep exploration of influential parameters on physicochemical properties of curcumin-loaded electrospun nanofibers. Adv. NanoBiomed Res. 2(6):2100143, 2022.

    Article  CAS  Google Scholar 

  143. Collins, M. N., et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31(21):2010609, 2021.

    Article  CAS  Google Scholar 

  144. Phogat, K., S. B. Ghosh, and S. Bandyopadhyay-Ghosh. Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. J. Appl. Polym. Sci. 140(4):e53362, 2023.

    Article  CAS  Google Scholar 

  145. Chen, Y., et al. Associations of bone mineral density with lean mass, fat mass, and dietary patterns in postmenopausal Chinese women: A 2-year prospective study. PLoS ONE. 10(9):e0137097, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bagi, M., et al. Advances in technical assessment of spiral inertial microfluidic devices toward bioparticle separation and profiling: A critical review. BioChip J. 18:45–67, 2024.

    Article  CAS  Google Scholar 

  147. Kong, B., et al. Tailoring micro/nano-fibers for biomedical applications. Bioactive Mater. 19:328–347, 2023.

    Article  CAS  Google Scholar 

  148. Keshvardoostchokami, M., et al. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials. 11(1):21, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Seraji, A. A., M. Aghvami-Panah, and F. Shams-Ghahfarokhi. Evaluation of ultimate engineering properties of polytetrafluoroethylene/carbon-aerogel/glass fiber porous composite. Colloids Surf. A.647:128975, 2022.

    Article  CAS  Google Scholar 

  150. Seraji, A. A., et al. Microstructural design and mechanical performance of epoxy/carbon nanotube fiber composite. J. Compos. Mater. 56(23):3591–3602, 2022.

    Article  CAS  Google Scholar 

  151. Zhao, S., et al. A review of magnesium corrosion in bio-applications: Mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate. J. Mater. Sci. 58(30):12158–12181, 2023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study has not been funded by any institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to investigation, conceptualization, analysis, and were involved in the writing process.

Corresponding author

Correspondence to Guangyong Pan.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Lv, H., Huang, Q. et al. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03500-5

Keywords

Navigation