Skip to main content
Log in

An Experimental Phototherapy Device for Studying the Effects of Blue Light on Patients with Raynaud’s Phenomenon

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Raynaud’s phenomenon (RP) is a condition that causes decreased blood flow to areas perfused by small blood vessels (e.g., fingers, toes). In severe cases, ulceration, gangrene, and loss of fingers may occur. Most treatments focus on inducing vasorelaxation in affected areas by the way of pharmaceuticals. Recently, animal studies have shown that vasorelaxation can be induced by non-coherent blue light (wavelength ~ 430–460 nm) through the actions of melanopsin, a photoreceptive opsin protein encoded by the OPN4 gene. To study this effect in humans, a reliable phototherapy device (PTD) is needed. We outline the construction of a PTD to be used in studying blue light effects on Raynaud’s patients. Our design addresses user safety, calibration, electromagnetic compatibility/interference (EMC/EMI), and techniques for measuring physiological responses (temperature sensors, laser Doppler flow sensors, infrared thermal imaging of the hands). We tested our device to ensure (1) safe operating conditions, (2) predictable, user-controlled irradiance output levels, (3) an ability for measuring physiological responses, and (4) features necessary to enable a double-blinded crossover study for a clinical trial. We also include in the Methods an approved research protocol utilizing our device that may serve as a starting point for clinical study. We introduced a reliable PTD for studying the effects of blue light therapy for patients suffering from Raynaud’s phenomenon and showed that our device is safe and reliable and includes the required measurement vectors for tracking treatment effects throughout the duration of a clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herrick, A. L. Raynaud’s phenomenon. J. Scleroderm. Relat. Disord. 4:89–101, 2019. https://doi.org/10.1177/2397198319826467.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haque, A., and M. Hughes. Raynaud’s phenomenon. Clin. Med. (Northfield Il). 20:580–589, 2020. https://doi.org/10.7861/clinmed.2020-0754.

    Article  Google Scholar 

  3. Silva, I., G. Teixeira, M. Bertão, R. Almeida, A. Mansilha, and C. Vasconcelos. Raynaud phenomenon. Rev. Vasc. Medi 4–5:9–16, 2016. https://doi.org/10.1016/j.rvm.2016.03.001.

    Article  Google Scholar 

  4. White, R. Z., T. Nguyen, and M. J. Sampson. Magnetic resonance characterisation of primary Raynaud’s phenomenon. J. Med. Imaging Radiat. Oncol. 2021. https://doi.org/10.1111/1754-9485.13293.

    Article  PubMed  Google Scholar 

  5. Herrick, A. L., and F. M. Wigley. Raynaud’s phenomenon. Best Pract. Res. Clin. Rheumatol. 34:101474, 2020. https://doi.org/10.1016/j.berh.2019.101474.

    Article  Google Scholar 

  6. Murphy, S. L., A. Lescoat, M. Alore, et al. How do patients define Raynaud’s phenomenon? Differences between primary and secondary disease. Clin. Rheumatol. 40:1611–1616, 2021. https://doi.org/10.1007/s10067-021-05598-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shtefiuk, O. V., R. I. Yatsyshyn, P. R. Herych, Y. Y. Karpyuk, and V. B. Boychuk. Features of the Raynaud’s syndrome course in patients with rheumatoid arthritis. World Med. Biol. 71:145–149, 2020. https://doi.org/10.26724/2079-8334-2019-4-70-145-149.

    Article  Google Scholar 

  8. Devgire, V., and M. Hughes. Raynaud’s phenomenon. Br. J. Hosp. Med. 80:658–664, 2019. https://doi.org/10.12968/hmed.2019.80.11.658.

    Article  Google Scholar 

  9. Rogers, S., and M. Hughes. Digital artery vasospasm in primary Raynaud’s phenomenon. Eur. J. Rheumatol. 7:201–202, 2020. https://doi.org/10.5152/eurjrheum.2020.19211.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vihlborg, P., K. Makdomi, H. Gavlovska, S. Wikstrom, and P. Graff. Arterial abnormalities in the hands of workers with vibration white fingers - a magnetic resonance angiography case series. J. Occup. Med. Toxicol. 16:27, 2021. https://doi.org/10.1186/s12995-021-00319-x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choi, E., and S. Henkin. Raynaud’s phenomenon and related vasospastic disorders. Vasc. Med. 26:56–70, 2021. https://doi.org/10.1177/1358863x20983455.

    Article  PubMed  Google Scholar 

  12. Hughes, M. Assessment and management of Raynaud’s phenomenon. Prescriber. 28:11–16, 2017.

    Article  Google Scholar 

  13. Sato, T., K. Arai, and S. Ichioka. Hyperbaric oxygen therapy for digital ulcers due to Raynaud’s disease. Case Rep. Plast. Surg. Hand Surg. 5:72–74, 2018. https://doi.org/10.1080/23320885.2018.1525684.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pauling, J. D., M. Hughes, and J. E. Pope. Raynaud’s phenomenon-an update on diagnosis, classification and management. Clin. Rheumatol. 38:3317–3330, 2019. https://doi.org/10.1007/s10067-019-04745-5.

    Article  PubMed  Google Scholar 

  15. Herrick, A. L., C. Heal, J. Wilkinson, et al. Temperature response to cold challenge and mobile phone thermography as outcome measures for systemic sclerosis-related Raynaud’s phenomenon. Scand. J. Rheumatol. 2021. https://doi.org/10.1080/03009742.2021.1907926.

    Article  PubMed  Google Scholar 

  16. Merkel, P. A., K. Herlyn, R. W. Martin, et al. Measuring disease activity and functional status in patients with scleroderma and Raynaud’s phenomenon. Arthritis Rheum. 46:2410–2420, 2002. https://doi.org/10.1002/art.10486.

    Article  PubMed  Google Scholar 

  17. Sternbersky, J., M. Tichy, and J. Zapletalova. Infrared thermography and capillaroscopy in the diagnosis of Raynaud’s phenomenon. Biomed. Papers-Olomouc. 165:90–98, 2021. https://doi.org/10.5507/bp.2020.031.

    Article  Google Scholar 

  18. Lindberg, L., B. Kristensen, E. Eldrup, J. F. Thomsen, and L. T. Jensen. Infrared thermography as a method of verification in Raynaud’s phenomenon. Diagnostics. 11:981, 2021. https://doi.org/10.3390/diagnostics11060981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindberg, L., B. Kristensen, J. F. Thomsen, E. Eldrup, and L. T. Jensen. Characteristic features of infrared thermographic imaging in primary Raynaud’s phenomenon. Diagnostics. 11:558, 2021. https://doi.org/10.3390/diagnostics11030558.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aleksiev, T., Z. Ivanova, H. Dobrev, and N. Atanasov. Application of a novel finger temperature device in the assessment of subjects with Raynaud’s phenomenon. Skin Res. Technol. 2021. https://doi.org/10.1111/srt.13070.

    Article  PubMed  Google Scholar 

  21. Rotondo, C., M. Nivuori, A. Chialà, et al. Evidence for increase in finger blood flow, evaluated by laser Doppler flowmetry, following iloprost infusion in patients with systemic sclerosis: a week-long observational longitudinal study. Scand. J. Rheumatol. 47:311–318, 2018. https://doi.org/10.1080/03009742.2017.1397187.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes, M., T. Moore, J. Manning, et al. A feasibility study of a novel low-level light therapy for digital ulcers in systemic sclerosis. J. Dermatol. Treat. 30:251–257, 2019. https://doi.org/10.1080/09546634.2018.1484875.

    Article  CAS  PubMed  Google Scholar 

  23. Ingegnoli, F., V. Smith, A. Sulli, and M. Cutolo. Capillaroscopy in routine diagnostics: potentials and limitations. Curr. Rheumatol. Rev. 14:5–11, 2018. https://doi.org/10.2174/1573397113666170615084229.

    Article  PubMed  Google Scholar 

  24. Herrick, A. L., M. Berks, and C. J. Taylor. Quantitative nailfold capillaroscopy-update and possible next steps. Rheumatology. 60:2054–2065, 2021. https://doi.org/10.1093/rheumatology/keab006.

    Article  PubMed  Google Scholar 

  25. Su, K. Y. C., M. Sharma, H. J. Kim, et al. Vasodilators for primary Raynaud’s phenomenon. Cochrane Database Syst Rev. 2021. https://doi.org/10.1002/14651858.CD006687.pub4.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thompson, A. E., and J. E. Pope. Calcium channel blockers for primary Raynaud’s phenomenon: a meta-analysis. Rheumatology. 44:145–150, 2005. https://doi.org/10.1093/rheumatology/keh390.

    Article  CAS  PubMed  Google Scholar 

  27. Wigley, F. M., and N. A. Flavahan. Raynaud’s phenomenon. N Engl. J. Ed. 375:556–565, 2016. https://doi.org/10.1056/NEJMra1507638.

    Article  CAS  Google Scholar 

  28. Dawit, H. W., Q. Zhang, Y. M. Li, S. R. Islam, J. F. Mao, and L. Wang. Design of electro-thermal glove with sensor function for Raynaud’s phenomenon patients. Materials. 14:377, 2021. https://doi.org/10.3390/ma14020377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azuma, N., T. Furukawa, Y. Shima, and K. Matsui. A usability survey of wrist mounted disposable heat pad on Raynaud’s phenomenon in patients with connective tissue diseases. Ann Rheum Dis. 79:692–693, 2020. https://doi.org/10.1136/annrheumdis-2020-eular.443.

    Article  Google Scholar 

  30. Sikka, G., G. P. Hussmann, D. Pandey, et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl. Acad. Sci. USA 111:17977–17982, 2014. https://doi.org/10.1073/pnas.1420258111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ortiz, S. B., D. Hori, Y. Nomura, et al. Opsin 3 and 4 mediate light-induced pulmonary vasorelaxation that is potentiated by G protein-coupled receptor kinase 2 inhibition. Am. J. Physiol. 314:L93–L106, 2018. https://doi.org/10.1152/ajplung.00091.2017.

    Article  CAS  Google Scholar 

  32. Modi, P., K. Jha, Y. Kumar, T. Kumar, R. Singh, and A. Mishra. The effect of short-term exposure to red and blue light on the autonomic tone of the individuals with newly diagnosed essential hypertension. J. Fam. Med. Primary Care. 8:14–21, 2019. https://doi.org/10.4103/jfmpc.jfmpc_375_18.

    Article  Google Scholar 

  33. Stern, M., M. Broja, R. Sansone, et al. Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans. Randomized Controlled Trial Research Support, Non-U.S. Gov't. Eur. J. Prevent. Cardiol.. 25:1875–1883, 2018. doi:https://doi.org/10.1177/2047487318800072

  34. Montealegre, A., N. Charpak, A. Parra, C. Devia, I. Coca, and A. M. Bertolotto. Effectiveness and safety of two phototherapy devices for the humanised management of neonatal jaundice. Anal Pediatr. 92:79–87, 2020. https://doi.org/10.1016/j.anpedi.2019.02.008.

    Article  Google Scholar 

  35. Liu, B. C., T. J. Farrell, and M. S. Patterson. Comparison of photodynamic therapy with different excitation wavelengths using a dynamic model of aminolevulinic acid-photodynamic therapy of human skin. J. Biomed. Opt. 17:088001, 2012. https://doi.org/10.1117/1.Jbo.17.8.088001.

    Article  PubMed  Google Scholar 

  36. Kleinpenning, M. M., M. E. Otero, P. E. J. van Erp, M. J. P. Gerritsen, and P. C. M. van de Kerkhof. Efficacy of blue light vs. red light in the treatment of psoriasis: a double-blind, randomized comparative study. J Eur Acad Dermatol Venereol. 26:219–225, 2012. https://doi.org/10.1111/j.1468-3083.2011.04039.x.

    Article  CAS  PubMed  Google Scholar 

  37. Keemss. Prospective, randomized study on the efficacy and safety of local UV-free blue light treatment of eczema (vol 232, pg 496, 2016). Dermatology. 232:522–522, 2016.

  38. Shang, Y. M., G. S. Wang, D. H. Sliney, C. H. Yang, and L. L. Lee. Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. Int. J. Ophthalmol. 10:191–202, 2017. https://doi.org/10.18240/ijo.2017.02.03.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schmitt, J. M., G. X. Zhou, E. C. Walker, and R. T. Wall. Multilayer model of photon diffusion in skin. J. Opt. Soc. Am. A. 7:2141–2153, 1990. https://doi.org/10.1364/josaa.7.002141.

    Article  CAS  PubMed  Google Scholar 

  40. Lisenko, S. A., M. M. Kugeiko, and A. M. Lisenkova. Noninvasive determination of spectral depth of light penetration into skin. OptSp. 115:779–785, 2013. https://doi.org/10.1134/s0030400x13110167.

    Article  CAS  Google Scholar 

  41. Kim, M., J. An, K. S. Kim, et al. Optical lens-microneedle array for percutaneous light delivery. Biomed. Opt. Express. 7:4220–4227, 2016. https://doi.org/10.1364/BOE.7.004220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liebmann, J., M. Born, and V. Kolb-Bachofen. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J. Invest. Dermatol. 130:259–269, 2010. https://doi.org/10.1038/jid.2009.19.

    Article  CAS  PubMed  Google Scholar 

  43. Webb, R. C., Y. J. Ma, S. Krishnan, et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1:e1500701, 2015. https://doi.org/10.1126/sciadv.1500701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Humeau, A., W. Steenbergen, H. Nilsson, and T. Stromberg. Laser Doppler perfusion monitoring and imaging: novel approaches. Med Biol Eng Comput. 45:421–435, 2007. https://doi.org/10.1007/s11517-007-0170-5.

    Article  PubMed  Google Scholar 

  45. Nogami, H., K. Komatsutani, T. Hirata and R. Sawada. IEEE TPC. Integrated laser Doppler blood flowmeter combining optical contact force, pp. 287–290, 2019.

Download references

Acknowledgments

The authors acknowledge the participation and invaluable contributions of Jennifer Chmura and Kushal Sehgal. We are also grateful for support from the University of Minnesota Institute for Engineering in Medicine (IEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Levac.

Ethics declarations

Disclosures

On January 9, 2024 the authors and the University of Minnesota received a patent (U.S. 11,865,357) for the PTD and various methods for translating the technology into useful solutions for patients (both stationary and wearable systems).

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Brett Levac: work was primarily done while a student at the University of Minnesota.

Appendix

Appendix

Electronic Subsystems

See Fig. 8.

Fig. 8
figure 8

a Integration of the PTD console, optical stack and electronic subsystems as viewed from the bottom. 12 VDC from the power monitor is distributed to the various units as shown (letter P). A step-up converter brings the 12 VDC power supply to ~ 42 VDC for the LED panels. This voltage is adjustable and set at the time of calibration. b Bottom view. A custom PCB (1) was created for interconnecting the various displays, indicator lights, fans, switches (1, 2), LED panels, power supply, and fuse. c Bottom view with optical stack and shielding removed for visibility. The HC detector microswitches (3), LED power connector (4), HC thermocouple (5) and fans (6) can be seen. The TC is fastened into a holder attached to the back of the optical stack, allowing it to extend into an inserted HC automatically (see Fig. 1c). The HC can then be changed for treatment vs. sham studies without needing to reconnect the thermocouple.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levac, B., Kerber, J., Wagner, E. et al. An Experimental Phototherapy Device for Studying the Effects of Blue Light on Patients with Raynaud’s Phenomenon. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03487-z

Keywords

Navigation