Skip to main content
Log in

Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture Locations Using Dynamic Drop Tests

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For traumatic lumbar spine injuries, the mechanisms and influence of anthropometrical variation are not yet fully understood under dynamic loading. Our objective was to evaluate whether geometrically subject-specific explicit finite element (FE) lumbar spine models based on state-of-the-art clinical CT data combined with general material properties from the literature could replicate the experimental responses and the fracture locations via a dynamic drop tower-test setup. The experimental CT datasets from a dynamic drop tower-test setup were used to create anatomical details of four lumbar spine models (T12 to L5). The soft tissues from THUMS v4.1 were integrated by morphing. Each model was simulated with the corresponding loading and boundary conditions from the dynamic lumbar spine tests that produced differing injuries and injury locations. The simulations resulted in force, moment, and kinematic responses that effectively matched the experimental data. The pressure distribution within the models was used to compare the fracture occurrence and location. The spinal levels that sustained vertebral body fracture in the experiment showed higher simulation pressure values in the anterior elements than those in the levels that did not fracture in the reference experiments. Similarly, the spinal levels that sustained posterior element fracture in the experiments showed higher simulation pressure values in the vertebral posterior structures compared to those in the levels that did not sustain fracture. Our study showed that the incorporation of the spinal geometry and orientation could be used to replicate the fracture type and location under dynamic loading. Our results provided an understanding of the lumbar injury mechanisms and knowledge on the load thresholds that could be used for injury prediction with explicit FE lumbar spine models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leucht, P., K. Fischer, G. Muhr, and E. J. Mueller. Epidemiology of traumatic spine fractures. Injury. 40(2):166–172, 2009. https://doi.org/10.1016/j.injury.2008.06.040.

    Article  PubMed  Google Scholar 

  2. Sundgren, P. C. M. P., M. M. D. Philipp, and P. V. M. P. Maly. Spinal Trauma. Amsterdam: Elsevier, 2007.

    Book  Google Scholar 

  3. Rajasekaran, S., R. M. Kanna, and A. P. Shetty. Management of thoracolumbar spine trauma: an overview. Indian J. Orthop. 49(1):72–82, 2015. https://doi.org/10.4103/0019-5413.143914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groves, C. J., V. N. Cassar-Pullicino, and B. J. Tins. Chance-Type Flexion- Distraction Injuries in the Thoracolumbar Spine: MR Imaging Characteristics. Oak Brook: Radiological Society of North America, 2005.

    Google Scholar 

  5. Hsu, J. M., T. Joseph, and A. M. Ellis. Thoracolumbar fracture in blunt trauma patients: guidelines for diagnosis and imaging. Injury. 34(6):426–433, 2003. https://doi.org/10.1016/s0020-1383(02)00368-6.

    Article  PubMed  Google Scholar 

  6. Yoganandan, N., A. M. Nahum, and J. W. Melvin. Accidental Injury: Biomechanics and Prevention. New York: Springer, 2014.

    Google Scholar 

  7. Ortiz-Paparoni, M., J. Op’t Eynde, J. Kait, B. Bigler, J. Shridharani, A. Schmidt, C. Cox, C. Morino, F. A. Pintar, N. Yoganandan, J. Moore, J. Y. Zhang, and C. R. Bass. The human lumbar spine during high-rate under seat loading: a combined metric injury criteria. Ann. Biomed. Eng. 49(11):3018–3030, 2021. https://doi.org/10.1007/s10439-021-02823-x.

    Article  PubMed  Google Scholar 

  8. Yoganandan, N., N. DeVogel, J. Moore, F. A. Pintar, A. Banerjee, and J. Y. Zhang. Human lumbar spine responses from vertical loading: ranking of forces via brier score metrics and injury risk curves. Ann. Biomed. Eng. 48(1):79–91, 2020. https://doi.org/10.1007/s10439-019-02363-5.

    Article  PubMed  Google Scholar 

  9. Sterba, M., C. -É. Aubin, E. Wagnac, L. Fradet, and P.-J. Arnoux. Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study. Med. Biol. Eng. Comput. 57(6):1381–1392, 2019. https://doi.org/10.1007/s11517-019-01964-5.

    Article  PubMed  Google Scholar 

  10. Richter, D., M. P. Hahn, P. A. W. Ostermann, A. Ekkernkamp, and G. Muhr. Vertical deceleration injures: a comparative study of the injury patterns of 101 patients after accidential and intentional high falls. Injury. 27(9):655–659, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Pintar, F. A., N. Yoganandan, D. J. Maiman, M. Scarboro, R. W. Rudd, and W. Rodney. Thoracolumbar spine fractures in frontal impact crashes. Ann. Adv. Automot. Med. 56:277–283, 2012.

    PubMed  PubMed Central  Google Scholar 

  12. Stemper, B. D., N. Yoganandan, G. R. Paskoff, R. J. Fijalkowski, S. G. Storvik, J. L. Baisden, F. A. Pintar, and B. S. Shender. Thoracolumbar spine trauma in military environments. Minerva Ortop. Traumatol. 62:1–16, 2011.

    Google Scholar 

  13. Yang, K. H., J. Hu, and N. A. White. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. 2006.

  14. Schwartz, D., B. Guleyupoglu, B. Koya, J. D. Stitzel, and F. S. Gayzik. Development of a computationally efficient full human body finite element model. Traffic Inj. Prev. 16(Suppl 1):49–56, 2015. https://doi.org/10.1080/15389588.2015.1021418.

    Article  Google Scholar 

  15. Iwamoto, M., Y. Nakahira, and H. Kimpara. Development and validation of the Total HUman Model for Safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash. Traffic Inj. Prev. 16(Suppl 1):36–48, 2015. https://doi.org/10.1080/15389588.2015.1015000.

    Article  Google Scholar 

  16. Stemper, B. D., S. Chirvi, N. Doan, J. L. Baisden, D. J. Maiman, W. H. Curry, N. Yoganandan, F. A. Pintar, G. R. Paskoff, and B. S. Shender. Biomechanical tolerance of whole lumbar spines in straightened posture subjected to axial acceleration. J. Orthop. Res. 36(6):1747–1756, 2018. https://doi.org/10.1002/jor.23826.

    Article  PubMed  Google Scholar 

  17. Schap, J. M., B. Koya, and F. S. Gayzik. Objective evaluation of whole body kinematics in a simulated, restrained frontal impact. Ann. Biomed. Eng. 47(2):512–523, 2019. https://doi.org/10.1007/s10439-018-02180-2.

    Article  PubMed  Google Scholar 

  18. Draper, D., A. S. Shah, S. Peldschus, and B. D. Stemper. Initial validation of a human body model lumbar spine using dynamic compression. In: Proceedings of the IRCOBI Conference, 2020, pp. 213–214.

  19. Rieger, L. K., D. Draper, A. S. Shah, S. Peldschus, and B. D. Stemper. Subject-specific Lumbar Spine Finite Element Model Creation and Validation using Dynamic Compression. In: Proceedings of the IRCOBI Conference, 2022, pp. 886–887.

  20. Garavelli, C., C. Curreli, M. Palanca, A. Aldieri, L. Cristofolini, and M. Viceconti. Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation. PLoS One. 17(9):e0272529, 2022. https://doi.org/10.1371/journal.pone.0272529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, C.-H., P. R. Landham, R. Eastell, M. A. Adams, P. Dolan, and L. Yang. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength. Proc. Inst. Mech Eng. Part H. 231(9):821–830, 2017. https://doi.org/10.1177/0954411917708806.

    Article  Google Scholar 

  22. Skalli, W., S. Robin, F. Lavaste, and J. Dubousset. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine. 18(5):536–545, 1993. https://doi.org/10.1097/00007632-199304000-00004.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, M., J. Yang, I. H. Lieberman, and R. Haddas. Lumbar spine finite element model for healthy subjects: development and validation. Comput. Methods Biomech. Biomed. Eng. 20(1):1–15, 2017. https://doi.org/10.1080/10255842.2016.1193596.

    Article  Google Scholar 

  24. Campbell, J. Q., D. J. Coombs, M. Rao, P. J. Rullkoetter, and A. J. Petrella. Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models. J. Biomech. 49(13):2669–2676, 2016. https://doi.org/10.1016/j.jbiomech.2016.05.025.

    Article  CAS  PubMed  Google Scholar 

  25. Rezaei, A., M. Tilton, Y. Li, M. J. Yaszemski, and L. Lu. Single-level subject-specific finite element model can predict fracture outcomes in three-level spine segments under different loading rates. Comput. Biol. Med. 137:104833, 2021. https://doi.org/10.1016/j.compbiomed.2021.104833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, C.-K., Y. E. Kim, C.-S. Lee, Y.-M. Hong, J.-M. Jung, and V. K. Goel. Impact response of the intervertebral disc in a finite-element model. Spine. 25(19):2431–2439, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Niemeyer, F., H.-J. Wilke, and H. Schmidt. Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis. J. Biomech. 45(8):1414–1423, 2012. https://doi.org/10.1016/j.jbiomech.2012.02.021.

    Article  PubMed  Google Scholar 

  28. Robin, S., W. Skalli, and F. Lavaste. Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur. Spine J. 3(2):84–90, 1994. https://doi.org/10.1007/BF02221445.

    Article  CAS  PubMed  Google Scholar 

  29. Stemper, B. D., S. G. Storvik, N. Yoganandan, J. L. Baisden, R. J. Fijalkowski, F. A. Pintar, B. S. Shender, and G. R. Paskoff. A new PMHS model for lumbar spine injuries during vertical acceleration. J. Biomech. Eng. 133(8):081002, 2011. https://doi.org/10.1115/1.4004655.

    Article  PubMed  Google Scholar 

  30. Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. 76(3):413–424, 1994. https://doi.org/10.2106/00004623-199403000-00012.

    Article  CAS  PubMed  Google Scholar 

  31. Rocabado, M. Biomechanical relationship of the cranial, cervical, and hyoid regions. J. Craniomandibular Pract. 1(3):61–66, 1983. https://doi.org/10.1080/07345410.1983.11677834.

    Article  CAS  PubMed  Google Scholar 

  32. Park, S.-M., K.-S. Song, S.-H. Park, H. Kang, and K. DanielRiew. Does whole-spine lateral radiograph with clavicle positioning reflect the correct cervical sagittal alignment? Eur. Spine J. 24(1):57–62, 2015. https://doi.org/10.1007/s00586-014-3525-2.

    Article  PubMed  Google Scholar 

  33. Sato, F., Y. Miyazaki, S. Morikawa, A. FerreiroPerez, S. Schick, K. Brolin, M. Y. Svensson, and M. Svensson. The effect of seat back inclination on spinal alignment in automotive seating postures. Front Bioeng. Biotechnol. 9:684043, 2021. https://doi.org/10.3389/fbioe.2021.684043.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roussouly, P., S. Gollogly, E. Berthonnaud, and J. Dimnet. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 30(3):346–353, 2005.

    Article  PubMed  Google Scholar 

  35. Harrison, D. E., D. D. Harrison, R. Cailliet, S. J. Troyanovich, T. J. Janik, and B. Holland. Cobb method or Harrison posterior tangent method. Spine. 25(16):2072–2078, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Mac-Thiong, J.-M., H. Labelle, E. Berthonnaud, R. R. Betz, and P. Roussouly. Sagittal spinopelvic balance in normal children and adolescents. Eur. Spine J. 16(2):227–234, 2007. https://doi.org/10.1007/s00586-005-0013-8.

    Article  PubMed  Google Scholar 

  37. Armijo-Olivo, S., X. Jara, N. Castillo, L. Alfonso, A. Schilling, E. Valenzuela, R. Frugone, and D. Magee. A comparison of the head and cervical posture between the self-balanced position and the Frankfurt method. J. Oral Rehabil. 33(3):194–201, 2006. https://doi.org/10.1111/j.1365-2842.2005.01554.x.

    Article  CAS  PubMed  Google Scholar 

  38. Berthonnaud, E., J. Dimnet, P. Roussouly, and H. Labelle. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J. Spinal Disord. Tech. 18(1):40–47, 2005. https://doi.org/10.1097/01.bsd.0000117542.88865.77.

    Article  PubMed  Google Scholar 

  39. Remus, R., A. Lipphaus, M. Neumann, and B. Bender. Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth—the passive structures. PLoS ONE. 16(4):0250456, 2021. https://doi.org/10.1371/journal.pone.0250456.

    Article  CAS  Google Scholar 

  40. Peldschus, S., A. Wagner, J. Muehlbauer, L. K. Rieger, J. Kerschreiter, J. Davidsson, C. Klug, S. Dussinger, and Schließler, Matthias, Eggers, Andre. Standardised validation procedure for qualifying the HBM to be used for assessing effectiveness of pilot protection principles, 2021.

  41. Mattucci, S. F. E., J. A. Moulton, N. Chandrashekar, and D. S. Cronin. Strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10:216–226, 2012. https://doi.org/10.1016/j.jmbbm.2013.04.005.

    Article  PubMed  Google Scholar 

  42. Newell, N., D. Carpanen, G. Grigoriadis, J. P. Little, and S. D. Masouros. Material properties of human lumbar intervertebral discs across strain rates. Spine J. 19(12):2013–2024, 2019. https://doi.org/10.1016/j.spinee.2019.07.012.

    Article  PubMed  Google Scholar 

  43. Forman, J. L., R. W. Kent, K. Mroz, B. Pipkorn, O. Bostrom, and M. Segui-Gomez. Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. Ann. Adv. Automot. Med. 56:109–124, 2012.

    PubMed  PubMed Central  Google Scholar 

  44. Izumiyama, T., N. Nishida, H. Yamagata, R. Asahi, X. Chen, J. Ohgi, S. Sugimoto, and M. Fukushima. Analysis of individual variabilities for lumbar and pelvic alignment in highly reclined seating postures and occupant kinematics in a collision. In: Proceedings of the IRCOBI Conference, 2022, pp. 941–955.

  45. Izumiyama, T., N. Nishida, H. Iwanaga, X. Chen, J. Ohgi, K. Mori, T. Hayashi, I. Sakuramoto, R. Asahi, S. Sugimoto, and M. Ueno. The analysis of an individual difference in human skeletal alignment in seated posture and occupant behavior using HBMs. In: Proceedings of the IRCOBI Conference, 2018, pp. 549–560.

  46. Panjabi, M. M., H. Hoffman, Y. Kato, and J. Cholewicki. Superiority of incremental trauma approach in experimental burst fracture studies. Clin. Biomech. 15(2):73–78, 2000. https://doi.org/10.1016/s0268-0033(99)00048-0.

    Article  CAS  Google Scholar 

  47. Willén, J., S. Lindahl, L. Irstam, B. Aldman, and A. Nordwall. The thoracolumbar crush fracture: an experimental study on instant axial dynamic loading: the resulting fracture type and its stability. Spine. 9(6):624–631, 1984. https://doi.org/10.1097/00007632-198409000-00014.

    Article  PubMed  Google Scholar 

  48. Campbell, J. Q., and A. J. Petrella. An automated method for landmark identification and finite-element modeling of the lumbar spine. IEEE Trans. Biomed. Eng. 62(11):2709–2716, 2015. https://doi.org/10.1109/TBME.2015.2444811.

    Article  PubMed  Google Scholar 

  49. Fuchs, T. Objektivierung der Modellbildung von verletzungsmechanischen Experimenten für die Validierung von Finite-Elemente Menschmodellen, 2018.

  50. Lee, K. K., and E.-C. Teo. Material sensitivity study on lumbar motion segment (L2–L3) under sagittal plane loadings using probabilistic method. Clin. Spine Surg. 18(2):163–170, 2005. https://doi.org/10.1097/01.bsd.0000147658.60961.51.

    Article  MathSciNet  Google Scholar 

  51. Chosa, E., K. Goto, K. Totoribe, and N. Tajima. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. J. Spinal Disord. Tech. 17(2):134–139, 2004. https://doi.org/10.1097/00024720-200404000-00010.

    Article  PubMed  Google Scholar 

  52. Natarajan, R. N., J. R. Williams, and G. B. J. Andersson. Modeling changes in intervertebral disc mechanics with degeneration. J. Bone Joint Surg. Am. 88(Suppl 2):36–40, 2006. https://doi.org/10.2106/JBJS.F.00002.

    Article  PubMed  Google Scholar 

  53. Natarajan, R. N., J. R. Williams, and G. B. J. Andersson. Recent advances in analytical modeling of lumbar disc degeneration. Spine. 29(23):2733–2741, 2004. https://doi.org/10.1097/01.brs.0000146471.59052.e6.

    Article  PubMed  Google Scholar 

  54. Ruberté, L. M., R. N. Natarajan, and G. B. Andersson. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—a finite element model study. J. Biomech. 42(3):341–348, 2009. https://doi.org/10.1016/j.jbiomech.2008.11.024.

    Article  PubMed  Google Scholar 

  55. Abu-Leil, S., Y. Floman, Y. Bronstein, and Y. M. Masharawi. A morphometric analysis of all lumbar intervertebral discs and vertebral bodies in degenerative spondylolisthesis. Eur. Spine J. 25(8):2535–2545, 2016. https://doi.org/10.1007/s00586-016-4673-3.

    Article  PubMed  Google Scholar 

  56. Masharawi, Y. M., N. Steinberg, and K. Salame. Lumbar facet orientation in spondylosis: a skeletal study. Spine. 32(6):176–180, 2007. https://doi.org/10.1097/01.brs.0000257565.41856.0f.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Office of Naval Research through Naval Air Warfare Center Aircraft Division Contract N00421-10-C-0049 and the Department of Veterans Affairs Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Rieger.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieger, L.K., Shah, A., Schick, S. et al. Subject-Specific Geometry of FE Lumbar Spine Models for the Replication of Fracture Locations Using Dynamic Drop Tests. Ann Biomed Eng 52, 816–831 (2024). https://doi.org/10.1007/s10439-023-03402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03402-y

Keywords

Navigation