Skip to main content
Log in

Toward a Mesoscopic Modeling Approach of Magnetohydrodynamic Blood Flow in Pathological Vessels: A Comprehensive Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The investigation of magnetohydrodynamic (MHD) blood flow within configurations that are pertinent to the human anatomy holds significant importance in the realm of scientific inquiry because of its practical implications within the medical field. This article presents an exhaustive appraisal of the diverse applications of magnetohydrodynamics and their computational modeling in biological contexts. These applications are classified into two categories: simple flow and pulsatile flow. An alternative approach of traditional CFD methods called Lattice Boltzmann Method (LBM), a mesoscopic method based on kinetic theory, is introduced to solve complex problems, such as hemodynamics. The results show that the flow velocity reduces considerably by increasing the magnetic field intensity, and the flow separation area is minimized by the increase of magnetic field strength. The LBM with BGK collision model has shown good results in terms of precision. Finally, this literature review has revealed a number of potential avenues for further research. Suggestions for future works are proposed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Figure reprinted from Shit and Majee [167])

Fig. 2

(Figure reprinted from Javadzadegan et al. [170])

Fig. 3
Fig. 4

(Figure reprinted from Teimouri et al. [176])

Fig. 5
Fig. 6
Fig. 7
Fig. 8

(Figure reprinted from Cherkaoui et al. [147])

Fig. 9

(Figure reprinted from Cherkaoui et al. [147])

Fig. 10

(Figure reprinted from Cherkaoui et al. [147])

Fig. 11

(Figure reprinted from Cherkaoui et al. [147])

Fig. 12

Similar content being viewed by others

References

  1. World Health Organization. Cardiovascular diseases (CVDS). www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  2. Basu, D., and R. Kulkarni. Overview of blood components and their preparation. Indian J. Anaesth. 2014. https://doi.org/10.4103/0019-5049.144647.

  3. Campinho, P., A. Vilfan, and J. Vermot. Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior. Front. Physiol. 2020. https://doi.org/10.3389/fphys.2020.00552.

  4. Arthur, M. D., C. Guyton, Ph. D. John, and E. Hall. Textbook of Medical Physiology. Elsevier, New York 2006.

    Google Scholar 

  5. Saqr, K. M., S. Tupin, S. Rashad, T. Endo, K. Niizuma, T. Tominaga, and M. Ohta. Physiologic blood flow is turbulent. Sci. Rep. 2020. https://doi.org/10.1038/s41598-020-72309-8.

  6. Serrette, R. L. An introduction to the finite element method using basic programs. Mech. Mach. Theory. 1992. https://doi.org/10.1016/0094-114x(92)90073-q.

  7. Turner, M. J., R. W. Clough, H. C. Martin, and L. J. Topp. Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 23:805–823, 1956. https://doi.org/10.2514/8.3664.

    Article  Google Scholar 

  8. Girault, V., and P. A. Raviart. An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33:235–271, 1979. https://doi.org/10.1007/bf01398643.

    Article  Google Scholar 

  9. Johnson, C. Numerical solution of partial differential equations by the finite element method. Math. Comput. 1989. https://doi.org/10.2307/2008668.

  10. Behr, M. A., L. P. Franca, and T. E. Tezduyar. Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 104:31–48, 1993. https://doi.org/10.1016/0045-7825(93)90205-c.

    Article  Google Scholar 

  11. Lévêque, E. An introduction to turbulence in fluids, and modelling aspects. EAS Publ. Ser. 21:7–42, 2006. https://doi.org/10.1051/eas:2006105.

    Article  Google Scholar 

  12. Baliga, B. R., and S. V. Patankar. A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numer. Heat Transf. B 6:245–261, 1983. https://doi.org/10.1080/10407798308546969.

    Article  Google Scholar 

  13. Patankar, S.V. Efficient numerical techniques for complex fluid flows—NASA Technical Reports Server (NTRS). Efficient Numerical Techniques for Complex Fluid Flows - NASA Technical Reports Server (NTRS). 2013. https://ntrs.nasa.gov/citations/19890003523.

  14. Patankar, S. V., and D. B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15:1787–1806, 1972. https://doi.org/10.1016/0017-9310(72)90054-3.

    Article  Google Scholar 

  15. Mohamad, A. A. LBM: fundamentals and engineering applications with computer codes. 2011. https://doi.org/10.2514/1.J051744

  16. Hardy, J., Y. Pomeau, and O. de Pazzis. Time evolution of a two-dimensional classical lattice system. Phys. Rev. Lett. 31:276–279, 1973. https://doi.org/10.1103/physrevlett.31.276.

    Article  Google Scholar 

  17. Frisch, U., B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56:1505–1508, 1986. https://doi.org/10.1103/physrevlett.56.1505.

    Article  CAS  PubMed  Google Scholar 

  18. McNamara, G. R., and G. Zanetti. Use of the boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61:2332–2335, 1988. https://doi.org/10.1103/physrevlett.61.2332.

    Article  CAS  PubMed  Google Scholar 

  19. Higuera, F. J., and J. Jiménez. Boltzmann approach to lattice gas simulations. Europhys. Lett. (EPL). 9:663–668, 1989. https://doi.org/10.1209/0295-5075/9/7/009.

    Article  Google Scholar 

  20. Koelman, J. M. V. A. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhys. Lett. (EPL). 15:603–607, 1991. https://doi.org/10.1209/0295-5075/15/6/007.

    Article  Google Scholar 

  21. Chen, S., H. Chen, D. Martnez, and W. Matthaeus. Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67:3776–3779, 1991. https://doi.org/10.1103/physrevlett.67.3776.

    Article  CAS  PubMed  Google Scholar 

  22. Shu, C., Y. Peng, and Y. T. Chew. Simulation of natural convection in a square cavity by taylor series expansion- and least squares-based LBM. Int. J. Mod. Phys. C. 13:1399–1414, 2002. https://doi.org/10.1142/s0129183102003966.

    Article  Google Scholar 

  23. D’Humières, D. Generalized Lattice Boltzmann equations, rarefied gas dynamics: theory and simulations. Prog. Astronaut. Aeronaut. 159:450–458, 1992.

    Google Scholar 

  24. d’Humières, D. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A 360:437–451, 2002. https://doi.org/10.1098/rsta.2001.0955.

    Article  Google Scholar 

  25. Karlin, I. V., A. Ferrante, and H. C. Öttinger. Perfect entropy functions of the LBM. Europhys. Lett. (EPL). 47:182–188, 1999. https://doi.org/10.1209/epl/i1999-00370-1.

    Article  CAS  Google Scholar 

  26. Atif, M., P. K. Kolluru, C. Thantanapally, and S. Ansumali. Essentially entropic lattice Boltzmann model. Phys. Rev. Lett. 2017. https://doi.org/10.1103/physrevlett.119.240602.

  27. Ansumali, S., and I. V. Karlin. Single relaxation time model for entropic lattice Boltzmann methods. Phys. Rev. E. 2002. https://doi.org/10.1103/physreve.65.056312.

  28. Ansumali, S., and I. V. Karlin. Entropy function approach to the lattice Boltzmann method. J. Stat. Phys. 107:291–308, 2002. https://doi.org/10.1023/A:1014575024265.

    Article  Google Scholar 

  29. Ziegler, D. P. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71:1171–1177, 1993. https://doi.org/10.1007/bf01049965.

    Article  Google Scholar 

  30. Bouzidi, M., M. Firdaouss, and P. Lallemand. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids. 13:3452–3459, 2001. https://doi.org/10.1063/1.1399290.

    Article  CAS  Google Scholar 

  31. Yu, D., R. Mei, and W. Shyy. A unified boundary treatment in lattice Boltzmann method. 41st Aerosp. Sci. Meet. Exhib. 2003. https://doi.org/10.2514/6.2003-953.

  32. Gunstensen, A. K., D. H. Rothman, S. Zaleski, and G. Zanetti. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A. 43:4320–4327, 1991. https://doi.org/10.1103/physreva.43.4320.

    Article  CAS  PubMed  Google Scholar 

  33. Grunau, D., S. Chen, and K. Eggert. A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A: Fluid Dyn. 5:2557–2562, 1993. https://doi.org/10.1063/1.858769.

    Article  CAS  Google Scholar 

  34. Han-Taw, C., and L. Jae-Yuh. Numerical analysis for hyperbolic heat conduction. Int. J. Heat Mass Transf. 36:2891–2898, 1993. https://doi.org/10.1016/0017-9310(93)90108-i.

    Article  Google Scholar 

  35. Ho, J.-R., C.-P. Kuo, W.-S. Jiaung, and C.-J. Twu. Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numer. Heat Transf. B: Fundam. 41:591–607, 2002. https://doi.org/10.1080/10407790190053798.

    Article  CAS  Google Scholar 

  36. Gupta, N., G. R. Chaitanya, and S. C. Mishra. Lattice Boltzmann method applied to variable thermal conductivity conduction and radiation problems. J. Thermophys. Heat Transf. 20:895–902, 2006. https://doi.org/10.2514/1.20557.

    Article  CAS  Google Scholar 

  37. Bettaibi, S., F. Kuznik, and E. Sediki. Hybrid LBM-MRT model coupled with finite difference method for double-diffusive mixed convection in rectangular enclosure with insulated moving lid. Phys. A: Stat. Mech. Appl. 444:311–326, 2016. https://doi.org/10.1016/j.physa.2015.10.029.

    Article  Google Scholar 

  38. Bettaibi, S., F. Kuznik, and E. Sediki. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity. Phys. Lett. A. 378:2429–2435, 2014. https://doi.org/10.1016/j.physleta.2014.06.032.

    Article  CAS  Google Scholar 

  39. Mhamdi, B., S. Bettaibi, O. Jellouli, and M. Chafra. MRT-lattice Boltzmann hybrid model for the double diffusive mixed convection with thermodiffusion effect. Nat. Comput. 21:393–405, 2022. https://doi.org/10.1007/s11047-022-09884-4.

    Article  CAS  Google Scholar 

  40. Bettaibi, S., E. Sediki, F. Kuznik, and S. Succi. Lattice Boltzmann simulation of mixed convection heat transfer in a driven cavity with non-uniform heating of the Bottom Wall. Commun. Theor. Phys. 63:91–100, 2015. https://doi.org/10.1088/0253-6102/63/1/15.

    Article  Google Scholar 

  41. Bettaibi, S., F. Kuznik, E. Sediki, and S. Succi. Numerical study of thermal diffusion and diffusion thermo effects in a differentially heated and salted driven cavity using MRT-Lattice Boltzmann finite difference model. Int. J. Appl. Mech. 2021. https://doi.org/10.1142/s1758825121500496.

  42. Succi, S. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can. J. Chem. Eng. 85:946–947, 2008. https://doi.org/10.1002/cjce.5450850617.

    Article  Google Scholar 

  43. Jahanshaloo, L., N. A. C. Sidik, A. Fazeli, H. A, and M. P. An overview of boundary implementation in lattice Boltzmann method for computational heat and mass transfer. Int. Commun. Heat Mass Transf. 78:1–12, 2016. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.014.

    Article  Google Scholar 

  44. Luo, Z., and H. Xu. Numerical simulation of heat and mass transfer through microporous media with lattice Boltzmann method. Therm. Sci. Eng. Prog. 9:44–51, 2019. https://doi.org/10.1016/j.tsep.2018.10.006.

    Article  Google Scholar 

  45. Chen, S., Z. Wang, X. Shan, and G. D. Doolen. Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat. Phys. 68:379–400, 1992. https://doi.org/10.1007/bf01341754.

    Article  Google Scholar 

  46. Martínez, D. O., S. Chen, and W. H. Matthaeus. Lattice Boltzmann magnetohydrodynamics. Phys. Plasmas. 1:1850–1867, 1994. https://doi.org/10.1063/1.870640.

    Article  Google Scholar 

  47. Bernsdorf, J., G. Brenner, and F. Durst. Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata. Comput. Phys. Commun. 129:247–255, 2000. https://doi.org/10.1016/s0010-4655(00)00111-9.

    Article  CAS  Google Scholar 

  48. Freed, D. M. Lattice-Boltzmann method for macroscopic porous media modeling. Int. J. Mod. Phys. C. 09:1491–1503, 1998. https://doi.org/10.1142/s0129183198001357.

    Article  Google Scholar 

  49. Zhao, Y. Lattice Boltzmann based PDE solver on the GPU. Visual Comput. 24:323–333, 2007. https://doi.org/10.1007/s00371-007-0191-y.

    Article  Google Scholar 

  50. Körner, C., T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel Lattice Boltzmann methods for CFD applications. Lect. Notes Comput. Sci. Eng. 2006. https://doi.org/10.1007/3-540-31619-1_13.

  51. Pohl, T., M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde. Optimization and profiling of the cache performance of parallel lattice Boltzmann codes. Parallel Process. Lett. 13:549–560, 2003. https://doi.org/10.1142/s0129626403001501.

    Article  Google Scholar 

  52. Zeiser, T., G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager. Introducing a parallel cache oblivious blocking approach for the lattice Boltzmann method. Prog. Comput. Fluid Dyn., Int. J. 8, 2008. https://doi.org/10.1504/pcfd.2008.018088.

  53. Xiong, Q., B. Li, J. Xu, X. Fang, X. Wang, L. Wang, X. He, and W. Ge. Efficient parallel implementation of the lattice Boltzmann method on large clusters of graphic processing units. Chin. Sci. Bull. 57:707–715, 2012. https://doi.org/10.1007/s11434-011-4908-y.

    Article  Google Scholar 

  54. Kabinejadian, F., D. N. Ghista, B. Su, M. Kaabi Nezhadian, L. P. Chua, J. H. Yeo, and H. L. Leo. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions. Med. Eng. Phys. 36:1233–1245, 2014. https://doi.org/10.1016/j.medengphy.2014.06.024.

    Article  PubMed  Google Scholar 

  55. Hewlin, R. L., and J. P. Kizito. Development of an experimental and digital cardiovascular arterial model for transient hemodynamic and postural change studies: “a preliminary framework analysis’’. Cardiovasc. Eng. Technol. 9:1–31, 2017. https://doi.org/10.1007/s13239-017-0332-z.

    Article  PubMed  Google Scholar 

  56. Park, S. M., Y. U. Min, M. J. Kang, K. C. Kim, and H. S. Ji. In vitrohemodynamic study on the stenotic right coronary artery using experimental and numerical analysis. J. Mech. Med. Biol. 10:695–712, 2010. https://doi.org/10.1142/s0219519410003812.

    Article  Google Scholar 

  57. Souza, A., M. S. Souza, D. Pinho, R. Agujetas, C. Ferrera, R. Lima, H. Puga, and J. Ribeiro. 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: low cost fabrication processes. Mech. Res. Commun. 2020. https://doi.org/10.1016/j.mechrescom.2020.103535.

  58. Bento, D., S. Lopes, I. Maia, R. Lima, and J. M. Miranda. Bubbles moving in blood flow in a microchannel network: the effect on the local hematocrit. Micromachines. 2020. https://doi.org/10.3390/mi11040344.

  59. Pinho, D., V. Carvalho, I. M. Gonçalves, S. Teixeira, and R. Lima. Visualization and measurements of blood cells flowing in microfluidic systems and blood rheology: a personalized medicine perspective. J. Pers. Med. 2020. https://doi.org/10.3390/jpm10040249.

  60. Carvalho, V., N. Rodrigues, R. Ribeiro, P. F. Costa, J. C. F. Teixeira, R. A. Lima, and S. F. C. F. Teixeira. Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation. Comput. Methods Biomech. Biomed. Eng. 24:623–636, 2020. https://doi.org/10.1080/10255842.2020.1842377.

    Article  Google Scholar 

  61. Stepniak, K., A. Ursani, N. Paul, and H. Naguib. Development of a phantom network for optimization of coronary artery disease imaging using computed tomography. Biomed. Phys. Eng. Express. 2019. https://doi.org/10.1088/2057-1976/ab2696.

  62. Sjostrand, S., A. Widerstrom, A. R. Ahlgren, and M. Cinthio. Design and fabrication of a conceptual arterial ultrasound phantom capable of exhibiting longitudinal wall movement. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 64:11–18, 2017. https://doi.org/10.1109/tuffc.2016.2597246.

    Article  PubMed  Google Scholar 

  63. Papathanasopoulou, P., S. Zhao, U. Köhler, M. B. Robertson, Q. Long, P. Hoskins, X. Yun Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging. 17:153–162, 2003. https://doi.org/10.1002/jmri.10243.

    Article  PubMed  Google Scholar 

  64. Chayer, B., M. van den Hoven, M.-H.R. Cardinal, H. Li, A. Swillens, R. Lopata, and G. Cloutier. Atherosclerotic carotid bifurcation phantoms with stenotic soft inclusions for ultrasound flow and vessel wall elastography imaging. Phys. Med. Biol. 2019. https://doi.org/10.1088/1361-6560/ab1145.

  65. Goudot, G., J. Poree, O. Pedreira, L. Khider, P. Julia, J.-M. Alsac, E. Laborie, T. Mirault, M. Tanter, M. Messas, and M. Pernot. Wall shear stress measurement by ultrafast vector flow imaging for atherosclerotic carotid stenosis. Ultraschall in Der Medizin - Europ. J. Ultrasound. 42:297–305, 2019. https://doi.org/10.1055/a-1060-0529.

    Article  Google Scholar 

  66. Karimi, A., M. Navidbakhsh, A. Shojaei, and S. Faghihi. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater. Sci. Eng.: C. 33:2550–2554, 2013. https://doi.org/10.1016/j.msec.2013.02.016.

    Article  CAS  Google Scholar 

  67. Karimi, A., M. Navidbakhsh, A. Shojaei, K. Hassani, and S. Faghihi. Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed. Eng. Appl. Basis Commun. 2014. https://doi.org/10.4015/s1016237214500136.

    Article  Google Scholar 

  68. Santamore, W. P., P. Walinsky, A. A. Bove, R. H. Cox, R. A. Carey, and J. F. Spann. The effects of vasoconstriction on experimental coronary artery stenosis. Am. Heart J. 100:852–858, 1980. https://doi.org/10.1016/0002-8703(80)90066-6.

    Article  CAS  PubMed  Google Scholar 

  69. Carvalho, V., I. Maia, A. Souza, J. Ribeiro, P. Costa, H. Puga, S. Teixeira, and R. A. Lima. In vitro biomodels in stenotic arteries to perform blood analogues flow visualizations and measurements: a review. Open Biomed. Eng. J. 14:87–102, 2020. https://doi.org/10.2174/1874120702014010087.

    Article  CAS  Google Scholar 

  70. Friedman, M. H., and D. P. Giddens. Blood flow in major blood vessels-modeling and experiments. Ann. Biomed. Eng. 33:1710–1713, 2005. https://doi.org/10.1007/s10439-005-8773-1.

    Article  PubMed  Google Scholar 

  71. Rezvan, A., C.-W. Ni, N. Alberts-Grill, and H. Jo. Animal, In Vitro, andEx VivoModels of Flow-Dependent Atherosclerosis: Role of Oxidative Stress. Antioxid. Redox. Signal. 15:1433–1448, 2011. https://doi.org/10.1089/ars.2010.3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yazdi, S. G., P. H. Geoghegan, P. D. Docherty, M. Jermy, and A. Khanafer. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng. 46:1697–1721, 2018. https://doi.org/10.1007/s10439-018-2085-8.

    Article  PubMed  Google Scholar 

  73. Fröhlich, E., and S. Salar-Behzadi. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int. J. Mol. Sci. 15:4795–4822, 2014. https://doi.org/10.3390/ijms15034795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rodrigues, R. O., P. C. Sousa, J. Gaspar, M. Bañobre-López, R. Lima, and G. Minas. Organ-on-a-chip: a preclinical microfluidic platform for the progress of nanomedicine. Small. 2020. https://doi.org/10.1002/smll.202003517.

  75. Lodi Rizzini, M., D. Gallo, G. De Nisco, F. D’Ascenzo, C. Chiastra, P. P. Bocchino, F. Piroli, G. M. De Ferrari, and U. Morbiducci. Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery? Med. Eng. Phys. 82:58–69, 2020. https://doi.org/10.1016/j.medengphy.2020.07.001.

    Article  PubMed  Google Scholar 

  76. Pedley, T. J., and Y. C. Fung. The fluid mechanics of large blood vessels. J. Biomech. Eng. 102:345–346, 1980. https://doi.org/10.1115/1.3138235.

    Article  Google Scholar 

  77. Berger, S. A., and L.-D. Jou. Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32:347–382, 2000. https://doi.org/10.1146/annurev.fluid.32.1.347.

    Article  Google Scholar 

  78. Quarteroni, A., M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2:163–197, 2000. https://doi.org/10.1007/s007910050039.

    Article  Google Scholar 

  79. Fung, Y. C. Biomechanics: Circulation. Springer, New York, 2013.

  80. Perktold, K., M. Resch, and H. Florian. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113:464–475, 1991. https://doi.org/10.1115/1.2895428.

    Article  CAS  PubMed  Google Scholar 

  81. Rodkiewicz, C. M., P. Sinha, and J. S. Kennedy. On the application of a constitutive equation for whole human blood. J. Biomech. Eng. 112:198–206, 1990. https://doi.org/10.1115/1.2891172.

    Article  CAS  PubMed  Google Scholar 

  82. Tu, C., and M. Deville. Pulsatile flow of non-Newtonian fluids through arterial stenoses. J. Biomech. 29:899–908, 1996. https://doi.org/10.1016/0021-9290(95)00151-4.

    Article  CAS  PubMed  Google Scholar 

  83. Gijsen, F. J. H., E. Allanic, F. N. van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a \(90^{\circ }\) curved tube. J. Biomech. 32:705–713, 1999. https://doi.org/10.1016/s0021-9290(99)00014-7.

    Article  CAS  PubMed  Google Scholar 

  84. Perktold, K., R. Peter, and M. Resch. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology. 26:1011–1030, 1989. https://doi.org/10.3233/bir-1989-26605.

    Article  CAS  PubMed  Google Scholar 

  85. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology. 31:565–586, 1994. https://doi.org/10.3233/bir-1994-31505.

    Article  CAS  PubMed  Google Scholar 

  86. Chaichana, T., Z. Sun, and J. Jewkes. Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput. Math. Methods Med. 2012. https://doi.org/10.1155/2012/504367.

  87. Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging. 24:457–467, 2005. https://doi.org/10.1109/tmi.2005.844159.

    Article  PubMed  Google Scholar 

  88. Soares, A. A., S. Gonzaga, C. Oliveira, A. Simões, and A. I. Rouboa. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Comput. Methods Biomech. Biomed. 20:822–831, 2017. https://doi.org/10.1080/10255842.2017.1302433.

    Article  Google Scholar 

  89. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011. https://doi.org/10.1016/j.jbiomech.2011.01.024.

    Article  PubMed  Google Scholar 

  90. Lou, Z., and W.-J. Yang. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. J. Biomech. 26:37–49, 1993. https://doi.org/10.1016/0021-9290(93)90611-h.

    Article  CAS  PubMed  Google Scholar 

  91. Chen, J., X.-Y. Lu, and W. Wang. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J. Biomech. 39:1983–1995, 2006. https://doi.org/10.1016/j.jbiomech.2005.06.012.

    Article  PubMed  Google Scholar 

  92. Gaudio, L. T., M. V. Caruso, S. De Rosa, C. Indolfi, and G. Fragomeni. Different blood flow models in coronary artery diseases: effects on hemodynamic parameters. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC). IEEE 2018.

  93. Carvalho, V., N. Rodrigues, R. A. Lima, and S. Teixeira. Modeling blood pulsatile turbulent flow in stenotic coronary arteries. Int. J. Biol. Biomed. Eng. 14:1998–4510, 2020.

    Google Scholar 

  94. Cho, Y. I., and K. R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology. 28:241–262, 1991. https://doi.org/10.3233/bir-1991-283-415.

    Article  CAS  PubMed  Google Scholar 

  95. Ternik, P. Symmetry breaking phenomena of purely viscous shear-thinning fluid flow in a locally constricted channel. Int. J. Simul. Model. 7:186–197, 2008. https://doi.org/10.2507/ijsimm07(4)3.107.

    Article  Google Scholar 

  96. Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues. Springer, New York, 2013.

  97. Mendieta, J. B., D. Fontanarosa, J. Wang, P. K. Paritala, T. McGahan, T. Lloyd, and Z. Li. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech. Model. Mechanobiol. 19:1477–1490, 2020. https://doi.org/10.1007/s10237-019-01282-7.

    Article  PubMed  Google Scholar 

  98. Šeta, B., M. Torlak, and A. Vila. Numerical simulation of blood flow through the aortic arch. CMBEBIH 2017: Proceedings International Conference Medical & Biological Engineering. Springer, Singapore, 2017.

  99. Xu, L., T. Yang, L. Yin, Y. Kong, Y. Vassilevski, and F. Liang. Numerical simulation of blood flow in aorta with dilation: a comparisonbetween laminar and LES modeling methods. Comput. Model. Eng. Sci. 124:509–526, 2020. https://doi.org/10.32604/cmes.2020.010719.

    Article  Google Scholar 

  100. Andersson, M., T. Ebbers, and M. Karlsson. Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow. J. Biomech. 85:108–117, 2019. https://doi.org/10.1016/j.jbiomech.2019.01.016.

    Article  PubMed  Google Scholar 

  101. Li, C., J. Jiang, H. Dong, and K. Zhao. Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. 64:59–68, 2017. https://doi.org/10.1016/j.jbiomech.2017.08.031.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Molla, M. M., and M. C. Paul. LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Med. Eng. Phys. 34:1079–1087, 2012. https://doi.org/10.1016/j.medengphy.2011.11.013.

    Article  CAS  PubMed  Google Scholar 

  103. Mittal, R., S. P. Simmons, and F. Najjar. Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485:337–378, 2003. https://doi.org/10.1017/s002211200300449x.

    Article  Google Scholar 

  104. Zhu, C., J.-H. Seo, and R. Mittal. Computational modelling and analysis of haemodynamics in a simple model of aortic stenosis. J. Fluid Mech. 851:23–49, 2018. https://doi.org/10.1017/jfm.2018.463.

    Article  CAS  Google Scholar 

  105. Dobroserdova, T., F. Liang, G. Panasenko, and Y. Vassilevski. Multiscale models of blood flow in the compliant aortic bifurcation. Appl. Math. Lett. 93:98–104, 2019. https://doi.org/10.1016/j.aml.2019.01.037.

    Article  Google Scholar 

  106. Liang, F., S. Takagi, R. Himeno, and H. Liu. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47:743–755, 2009. https://doi.org/10.1007/s11517-009-0449-9.

    Article  PubMed  Google Scholar 

  107. Alimohammadi, M., J. M. Sherwood, Karimpour M. Agu, O. Balabani, S. Díaz-Zuccarini, and V. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models. Biomed. Eng. Online. 14, 2015. https://doi.org/10.1186/s12938-015-0032-6.

  108. Bonfanti, M., S. Balabani, M. Alimohammadi, O. Agu, S. Homer-Vanniasinkam, and V. Díaz-Zuccarini. A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: comparison with fluid-structure interaction. Med. Eng. Phys. 58:72–79, 2018. https://doi.org/10.1016/j.medengphy.2018.04.014.

    Article  Google Scholar 

  109. Alishahi, M., M. M. Alishahi, and H. Emdad. Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Sci. Iran. 18:1297–1305, 2011. https://doi.org/10.1016/j.scient.2011.11.021.

    Article  Google Scholar 

  110. Xiong, G., C. A. Figueroa, N. Xiao, and C. A. Taylor. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties. Int. J. Numer. Methods Biomed. Eng. 27:1000–1016, 2010. https://doi.org/10.1002/cnm.1404.

    Article  Google Scholar 

  111. Lopes, D., H. Puga, J. C. Teixeira, and S. F. Teixeira. Fluid-structure Interaction study of carotid blood flow: comparison between viscosity models. Eur. J. Mech. - B/Fluids. 83:226–234, 2020. https://doi.org/10.1016/j.euromechflu.2020.05.010.

    Article  Google Scholar 

  112. Saeedi, M., A. Shamloo, and A. Mohammadi. Fluid-structure interaction simulation of blood flow and cerebral aneurysm: effect of partly blocked vessel. J. Vasc. Res. 56:296–307, 2019. https://doi.org/10.1159/000503786.

    Article  PubMed  Google Scholar 

  113. Zhao, Y., J. Ping, X. Yu, R. Wu, C. Sun, and M. Zhang. Fractional flow reserve-based 4D hemodynamic simulation of time-resolved blood flow in left anterior descending coronary artery. Clin. Biomech. 70:164–169, 2019. https://doi.org/10.1016/j.clinbiomech.2019.09.003.

    Article  Google Scholar 

  114. Torii, R., N. B. Wood, N. Hadjiloizou, A. W. Dowsey, A. R. Wright, A. D. Hughes, J. Davies, D. P. Francis, J. Mayet, G.-Z. Yang, S. AMc. G. Thom, and X. Y. Xu. Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. numer. methods eng. 25:565–580, 2009. https://doi.org/10.1002/cnm.1231.

    Article  Google Scholar 

  115. Thomas, B., and K. S. Sumam. Blood flow in human arterial system—a review. Proc. Technol. 24:339–346, 2016. https://doi.org/10.1016/j.protcy.2016.05.045.

    Article  Google Scholar 

  116. Long, Q., X. Y. Xu, M. Bourne, and T. M. Griffith. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43:565–576, 2000. https://doi.org/10.1002/(sici)1522-2594(200004)43:4<565::aid-mrm11>3.0.co;2-l.

    Article  CAS  PubMed  Google Scholar 

  117. Oshima, M., R. Torii, T. Kobayashi, N. Taniguchi, and K. Takagi. Finite element simulation of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Eng. 191:661–671, 2001. https://doi.org/10.1016/s0045-7825(01)00307-3.

    Article  Google Scholar 

  118. Morris, L., P. Delassus, A. Callanan, M. Walsh, F. Wallis, P. Grace, and T. McGloughlin. 3-D numerical simulation of blood flow through models of the human Aorta. J. Biomech. Eng. 127:767–775, 2005. https://doi.org/10.1115/1.1992521.

    Article  CAS  PubMed  Google Scholar 

  119. Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elem. Anal. Des. 46:514–525, 2010. https://doi.org/10.1016/j.finel.2010.01.007.

    Article  Google Scholar 

  120. Lee, S. H., H. G. Choi, and J. Y. Yool. Finite element simulation of blood flow in a flexible carotid artery bifurcation. J. Mech. Sci. Technol. 26:1355–1361, 2012. https://doi.org/10.1007/s12206-012-0331-9.

    Article  Google Scholar 

  121. Suito, H., T. Ueda, and D. Sze. Numerical simulation of blood flow in the thoracic aorta using a centerline-fitted finite difference approach. Jpn. J. Ind. Appl. Math. 30:701–710, 2013. https://doi.org/10.1007/s13160-013-0123-3.

    Article  Google Scholar 

  122. Mulani, S. S., and P. I. Jagad. Analysis of the effects of plaque deposits on the blood flow through human artery. Int. Eng. Res. 41:2319–3182, 2015.

    Google Scholar 

  123. Boghi, A., and F. Gori. Numerical simulation of blood flow through different stents in stenosed and non-stenosed vessels. Numer. Heat Transf.; A: Appl. 68:225–242, 2015. https://doi.org/10.1080/10407782.2014.977151.

    Article  CAS  Google Scholar 

  124. Jabir, E., and S. A. Lal. Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation. Proc. Inst. Mech. Eng. H P I MECH. ENG. H. 230:709–726, 2016. https://doi.org/10.1177/0954411916644474.

    Article  CAS  Google Scholar 

  125. Oliveira, C., A. A. Soares, A. Simões, S. Gonzaga, and A. Rouboa. Numerical study of non-Newtonian blood behavior in the abdominal aortic bifurcation of a patient-specific at rest. Open Sports Sci. J. 10:279–285, 2017. https://doi.org/10.2174/1875399x01710010279.

    Article  Google Scholar 

  126. Abbas, S. S., M. S. Nasif, M. A. M. Said, and R. Al-Waked. Numerical simulation of the non-Newtonian blood flow through aortic Bileaflet mechanical heart valve using fluid-structure interaction approach. AIP Conf. Proc. 2018. https://doi.org/10.1063/1.5075593.

  127. Kaewbumrung, M., S. Orankitjaroen, P. Boonkrong, B. Nuntadilok, and B. Wiwatanapataphee. Numerical simulation of dispersed particle-blood flow in the stenosed coronary arteries: Int. J. Differ. Equ. 2018. https://doi.org/10.1155/2018/2593425.

  128. Kabir, M. A., M. F. Alam, and M. A. Uddin. A numerical study on the effects of reynolds number on blood flow with spiral velocity through regular arterial stenosis. Chiang Mai J. Sci. 45:2515–2527, 2018.

    CAS  Google Scholar 

  129. Malota, Z., J. Glowacki, W. Sadowski, and M. Kostur. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices. BMC Cardiovasc. Disord. 2018. https://doi.org/10.1186/s12872-018-0865-6.

  130. Elhanafy, A., A. Guaily, and A. Elsaid. Numerical simulation of blood flow in abdominal aortic aneurysms: effects of blood shear-thinning and viscoelastic properties. Math. Comput. Simul. 160:55–71, 2019. https://doi.org/10.1016/j.matcom.2018.12.002.

    Article  Google Scholar 

  131. Selmi, M., H. Belmabrouk, and A. Bajahzar. Numerical study of the blood flow in a deformable human aorta. Appl. Sci. 2019. https://doi.org/10.3390/app9061216.

  132. Lo, E., L. Menezes, and R. Torii. Impact of inflow boundary conditions on the calculation of CT-based FFR. Fluids. 2019. https://doi.org/10.3390/fluids4020060.

  133. Jahromi, R., H. A. Pakravan, M. S. Saidi, and B. Firoozabadi. Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view. Biocybern. Biomed. Eng. 39:188–198, 2019. https://doi.org/10.1016/j.bbe.2018.11.006.

    Article  Google Scholar 

  134. Yan, S.-R., S. Sedeh, D. Toghraie, M. Afrand, and L. K. Foong. Analysis and manegement of laminar blood flow inside a cerebral blood vessel using a finite volume software program for biomedical engineering. Comput. Methods Programs Biomed. 2020. https://doi.org/10.1016/j.cmpb.2020.105384.

  135. Kashyap, V., B. B. Arora, and S. Bhattacharjee. A computational study of branch-wise curvature in idealized coronary artery bifurcations. Appl. Eng. Sci. 2020. https://doi.org/10.1016/j.apples.2020.100027.

  136. Gabbanelli, S., G. Drazer, and J. Koplik. Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E. 2005. https://doi.org/10.1103/physreve.72.046312.

  137. Velivelli, A. C., and K. M. Bryden. Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Physics A 362:139–145, 2006. https://doi.org/10.1016/j.physa.2005.09.031.

    Article  Google Scholar 

  138. Fang, H., Z. Wang, Z. Lin, and M. Liu. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E. 2002. https://doi.org/10.1103/physreve.65.051925.

  139. Tamagawa, M., H. Kaneda, M. Hiramoto, and S. Nagahama. Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif. Organs. 33:604–610, 2009. https://doi.org/10.1111/j.1525-1594.2009.00782.x.

    Article  PubMed  Google Scholar 

  140. Artoli, A. M., D. Kandhai, H. C. J. Hoefsloot, A. G. Hoekstra, and P. M. A. Sloot. Lattice BGK simulations of flow in a symmetric bifurcation. Future Gener. Comput. Syst. 20:909–916, 2004. https://doi.org/10.1016/j.future.2003.12.002.

    Article  Google Scholar 

  141. Boyd, J., J. Buick, J. A. Cosgrove, and P. Stansell. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery. Phys. Med. Biol. 50:4783–4796, 2005. https://doi.org/10.1088/0031-9155/50/20/003.

    Article  CAS  PubMed  Google Scholar 

  142. Boyd, J., J. Buick, and S. Green. A second-order accurate lattice Boltzmann non-Newtonian flow model. J. Phys. A Math. Gen. 39:14241–14247, 2006. https://doi.org/10.1088/0305-4470/39/46/001.

    Article  Google Scholar 

  143. Boyd, J., J. M. Buick, and S. Green. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys. Fluids. 2007. https://doi.org/10.1063/1.2772250.

  144. Bernsdorf, J., and D. Wang. Non-Newtonian blood flow simulation in cerebral aneurysms. Comput. Math. with Appl. 58:1024–1029, 2009. https://doi.org/10.1016/j.camwa.2009.02.019.

    Article  Google Scholar 

  145. Ashrafizaadeh, M., and H. Bakhshaei. A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. with Appl. 58:1045–1054, 2009. https://doi.org/10.1016/j.camwa.2009.02.021.

    Article  Google Scholar 

  146. Chopard, B., D. Lagrava, O. Malaspinas, R. Ouared, J. Latt, K. O. Lovblad, and V. Pereira-Mendes. A lattice Boltzmann modeling of bloodflow in cerebral aneurysms. V. Eur. Conf. Comput. Fluid Dyn. ECCOMAS CFD 2010.

  147. Cherkaoui, I., S. Bettaibi, A. Barkaoui, and F. Kuznik. Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method. Comput. Methods Programs Biomed. 2022. https://doi.org/10.1016/j.cmpb.2022.106850.

  148. Cherkaoui, I., S. Bettaibi, and A. Barkaoui. Double population lattice Boltzmann model for magneto-hydrodynamic blood flow in stenotic artery. Cellular automata: 15th International Conference on Cellular Automata for Research and Industry, ACRI 2022, Geneva, Switzerland, September 12–15, 2022, Proceedings. Springer International Publishing, Cham, 2022.

  149. Shahzad, H., X. Wang, I. Sarris, K. Iqbal, M. B. Hafeez, and M. Krawczuk. Study of Non-Newtonian biomagnetic blood flow in a stenosed bifurcated artery having elastic walls. Sci. Rep. 2021. https://doi.org/10.1038/s41598-021-03426-1.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Anwar, M. A., K. Iqbal, and M. Razzaq. Analysis of biomagnetic blood flow in a stenosed bifurcation artery amidst elastic walls. Phys. Scr. 2021. https://doi.org/10.1088/1402-4896/abf67b.

  151. Misra, J. C., A. Sinha, and G. C. Shit. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Appl. Math. Mech. 31:1405–1420, 2010. https://doi.org/10.1007/s10483-010-1371-6.

    Article  Google Scholar 

  152. Tzirtzilakis, E. E. Biomagnetic fluid flow in a channel with stenosis. Physics D 237:66–81, 2008. https://doi.org/10.1016/j.physd.2007.08.006.

    Article  Google Scholar 

  153. Akar, S., J. A. Esfahani, and S. A. Mousavi Shaegh. A numerical investigation of magnetic field effect on blood flow as biomagnetic fluid in a bend vessel. J. Magn. Magn. Mater. 482:336–349, 2019. https://doi.org/10.1016/j.jmmm.2019.03.043.

    Article  CAS  Google Scholar 

  154. Tenforde, T. S. Magnetically induced electric fields and currents in the circulatory system. Prog. Biophys. Mol. Biol. 87:279–288, 2005. https://doi.org/10.1016/j.pbiomolbio.2004.08.003.

    Article  PubMed  Google Scholar 

  155. Higashi, T., A. Yamagishi, T. Takeuchi, N. Kawaguchi, S. Sagawa, S. Onishi, and M. Date. Orientation of erythrocytes in a strong static magnetic field. Blood. 82:1328–1334, 1993. https://doi.org/10.1182/blood.v82.4.1328.bloodjournal8241328.

    Article  CAS  PubMed  Google Scholar 

  156. Haik, Y., V. Pai, and C.-J. Chen. Apparent viscosity of human blood in a high static magnetic field. J. Magn. Magn. Mater. 225:180–186, 2001. https://doi.org/10.1016/s0304-8853(00)01249-x.

    Article  CAS  Google Scholar 

  157. Korchevskii, E. M., and L. S. Marochnik. Magnetohydrodynamic version of movement of blood. Biophysics. 10(2):411–414, 1965.

    Google Scholar 

  158. Gold, R. R. Magnetohydrodynamic pipe flow. Part 1. J. Fluid Mech. 13:505–512, 1962. https://doi.org/10.1017/s0022112062000889.

    Article  Google Scholar 

  159. Sud, V. K., P. K. Suri, and R. K. Mishra. Effect of magnetic field on oscillating blood flow in arteries. Stud. Biophys. 46(3):163–171, 1974.

    Google Scholar 

  160. Abi-Abdallah, D., V. Robin, O. Fokapu, and A. Drochon. Pulsed magnetohydrodynamic blood flow in a rigid vessel. Comput. Methods Biomech. Biomed. 10:159–160, 2007. https://doi.org/10.1080/10255840701479636.

    Article  Google Scholar 

  161. Shit, G. C., and M. Roy. Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration. J. Mech. Med. Biol. 11:643–661, 2011.

    Article  Google Scholar 

  162. Loukopoulos, V. C., and E. E. Tzirtzilakis. Biomagnetic channel flow in spatially varying magnetic field. Int. J. Eng. Sci. 42:571–590, 2004.

    Article  Google Scholar 

  163. Kenjereš, S. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields. Int. J. Heat Fluid Flow. 29:752–764, 2008.

    Article  Google Scholar 

  164. Ikbal, M. A., S. Chakravarty, K. L. Wong, J. Mazumdar, and P. K. Mandal. Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field. J. Comput. Appl. Math. 230:243–259, 2009.

    Article  Google Scholar 

  165. Mustapha, N., N. Amin, M. Chakravarty, and P. K. Mandal. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries. Comput. Biol. Med. 39:896–906, 2009.

    Article  PubMed  Google Scholar 

  166. Türk, Ö., C. Bozkaya, and M. Tezer-Sezgin. A FEM approach to biomagnetic fluid flow in multiple stenosed channels. Comput. Fluids. 97:40–51, 2014.

    Article  Google Scholar 

  167. Shit, G. C., and S. Majee. Magnetic field interaction with blood flow and heat transfer through diseased artery having Abdominal Aortic Aneurysm. Eur. J. Mech. B/Fluids. 71:1–14, 2018. https://doi.org/10.1016/j.euromechflu.2018.03.010.

    Article  Google Scholar 

  168. Tzirtzilakis, E. E. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles. Phys. Fluids.27:061902, 2015. https://doi.org/10.1063/1.4922757.

    Article  CAS  Google Scholar 

  169. Sharifi, A., S. Yekani Motlagh, and H. Badfar. Investigation of the effects of two parallel wires’ non-uniform magnetic field on heat and biomagnetic fluid flow in an aneurysm. Int. J. Comput. Fluid Dyn. 32:248–259, 2018. https://doi.org/10.1080/10618562.2018.1490413.

    Article  Google Scholar 

  170. Javadzadegan, A., A. Moshfegh, H. H. Afrouzi, and M. Omidi. Magnetohydrodynamic blood flow in patients with coronary artery disease. Comput. Methods Programs Biomed. 163:111–122, 2018. https://doi.org/10.1016/j.cmpb.2018.06.007.

    Article  PubMed  Google Scholar 

  171. Chi, Q., X. Li, S. Chang, L. Mu, Y. He, and H. Gao. In-vitro experimental study on the fluid-structure interaction in an image-based flexible model with a lateral cerebral aneurysm. Med. Novel Technol. Devices. 2019. https://doi.org/10.1016/j.medntd.2019.100019.

  172. Shit, G. C., and S. Majee. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. J. Magn. Magn. Mater. 388:106–115, 2015.

    Article  CAS  Google Scholar 

  173. Bandyopadhyay, S., and G. C. Layek. Study of Magnetohydrodynamic pulsatile flow in a constricted channel. Commun. Nonlinear Sci. Numer. 17:2434–2446, 2012.

    Article  Google Scholar 

  174. Alimohamadi, H., and M. Imani. Transient non-Newtonian blood flow under magnetic targeting drug delivery in an aneurysm blood vessel with porous walls. Int. J. Comput. Methods Eng. Sci. Mech. 2014.

  175. Sadeghi, M. R., M. Jahangiri, and M. Saghafian. The impact of uniform magnetic field on the pulsatile non-Newtonian blood flow in an elastic stenosed artery. J. Braz. Soc. Mech. Sci. Eng. 2020. https://doi.org/10.1007/s40430-020-02651-5.

  176. Teimouri, K., M. R. Tavakoli, A. Ghafari, and K. C. Kim. Investigation of the plaque morphology effect on changes of pulsatile blood flow in a stenosed curved artery induced by an external magnetic field. Comput. Biol. Med. 2021. https://doi.org/10.1016/j.compbiomed.2021.104600.

  177. Ali, A., M. Umar, Z. Abbas, G. Shahzadi, Z. Bukhari, and A. Saleem. Numerical Investigation of MHD pulsatile flow of micropolar fluid in a channel with symmetrically constricted walls. Mathematics. 2021. https://doi.org/10.3390/math9091000.

  178. Aharonov, E., and D. H. Rothman. Non-Newtonian flow (through porous media): a lattice-Boltzmann method. Geophys. Res. Lett. 20:679–682, 1993. https://doi.org/10.1029/93gl00473.

    Article  Google Scholar 

  179. Yoshino, M., Y. Hotta, T. Hirozane, and M. Endo. A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. J. Non-Newton. Fluid Mech. 147:69–78, 2007. https://doi.org/10.1016/j.jnnfm.2007.07.007.

    Article  CAS  Google Scholar 

  180. Vikhansky, A. Lattice-Boltzmann method for yield-stress liquids. J. Non-Newton. Fluid Mech. 155:95–100, 2008. https://doi.org/10.1016/j.jnnfm.2007.09.001.

    Article  CAS  Google Scholar 

  181. Stahl, B., B. Chopard, and J. Latt. Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries. Comput. Fluids. 39:1625–1633, 2010. https://doi.org/10.1016/j.compfluid.2010.05.015.

    Article  Google Scholar 

  182. Maier, R. S., R. S. Bernard, and D. W. Grunau. Boundary conditions for the lattice Boltzmann method. Phys. Fluids. 8:1788–1801, 1996. https://doi.org/10.1063/1.868961.

    Article  CAS  Google Scholar 

  183. Noble, D. R., S. Chen, J. G. Georgiadis, and R. O. Buckius. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids. 7:203–209, 1995. https://doi.org/10.1063/1.868767.

    Article  CAS  Google Scholar 

  184. Inamuro, T., M. Yoshino, and F. Ogino. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids. 7:2928–2930, 1995. https://doi.org/10.1063/1.868766.

    Article  CAS  Google Scholar 

  185. Chen, S., D. Martínez, and R. Mei. On boundary conditions in lattice Boltzmann methods. Phys. Fluids. 8:2527–2536, 1996. https://doi.org/10.1063/1.869035.

    Article  CAS  Google Scholar 

  186. Filippova, O., and D. Hänel. Grid refinement for lattice-BGK models. J. Comput. Phys. 147:219–228, 1998. https://doi.org/10.1006/jcph.1998.6089.

    Article  Google Scholar 

  187. Mei, R., L.-S. Luo, and W. Shyy. An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155:307–330, 1999. https://doi.org/10.1006/jcph.1999.6334.

    Article  CAS  Google Scholar 

  188. Yu, D., R. Mei, W. Shyy. A unified boundary treatment in lattice Boltzmann method. 41st Aerosp. Sci. Meet. Exhib. 2003. https://doi.org/10.2514/6.2003-953.

  189. Succi, S. The lattice Boltzmann equation for fluid dynamics and beyond. 2001. https://doi.org/10.1604/9780198503989.

  190. Banerjee, M. K., R. Ganguly, and A. Datta. Effect of pulsatile flow waveform and womersley number on the flow in stenosed arterial geometry. ISRN Biomath. 2012. https://doi.org/10.5402/2012/853056.

  191. Cherkaoui, I., S. Bettaibi, A. Barkaoui, and F. Kuznik. Numerical study of pulsatile thermal magnetohydrodynamic blood flow in an artery with aneurysm using Lattice Boltzmann Method. Commun. Nonlinear Sci. Numer. Simul. 2023. https://doi.org/10.1016/j.cnsns.2023.107281.

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Bettaibi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkaoui, I., Bettaibi, S., Barkaoui, A. et al. Toward a Mesoscopic Modeling Approach of Magnetohydrodynamic Blood Flow in Pathological Vessels: A Comprehensive Review. Ann Biomed Eng 51, 2415–2440 (2023). https://doi.org/10.1007/s10439-023-03350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03350-7

Keywords

Navigation