Skip to main content
Log in

Effect of Nonlinear Hyperelastic Property of Arterial Tissues on the Pulse Wave Velocity Based on the Unified-Fiber-Distribution (UFD) Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pulse wave velocity (PWV) is a key, independent risk factor for future cardiovascular events. The Moens–Korteweg equation describes the relation between PWV and the stiffness of arterial tissue with an assumption of isotopic linear elastic property of the arterial wall. However, the arterial tissue exhibits highly nonlinear and anisotropic mechanical behaviors. There is a limited study regarding the effect of arterial nonlinear and anisotropic properties on the PWV. In this study, we investigated the impact of the arterial nonlinear hyperelastic properties on the PWV, based on our recently developed unified-fiber-distribution (UFD) model. The UFD model considers the fibers (embedded in the matrix of the tissue) as a unified distribution, which expects to be more physically consistent with the real fiber distribution than existing models that separate the fiber distribution into two/several fiber families. With the UFD model, we fitted the measured relation between the PWV and blood pressure which obtained a good accuracy. We also modeled the aging effect on the PWV based on observations that the stiffening of arterial tissue increases with aging, and the results agree well with experimental data. In addition, we did parameter studies on the dependence of the PWV on the arterial properties of fiber initial stiffness, fiber distribution, and matrix stiffness. The results indicate the PWV increases with increasing overall fiber component in the circumferential direction. The dependences of the PWV on the fiber initial stiffness, and matrix stiffness are not monotonic and change with different blood pressure. The results of this study could provide new insights into arterial property changes and disease information from the clinical measured PWV data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nabeel, P., V. R. Kiran, J. Joseph, V. Abhidev, and M. Sivaprakasam. Local pulse wave velocity: Theory, methods, advancements, and clinical applications. IEEE Rev. Biomed. Eng. 13:74–112, 2019.

    PubMed  Google Scholar 

  2. Mancia, G., R. Fagard, K. Narkiewicz, J. Redán, A. Zanchetti, M. Böhm, T. Christiaens, R. Cifkova, G. De Backer, and A. Dominiczak. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertension. 31(10):1925–1938, 2013.

    CAS  Google Scholar 

  3. Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. College Cardiol. 55(13):1318–1327, 2010.

    Google Scholar 

  4. Yamashina, A., H. Tomiyama, T. Arai, K.-I. Hirose, Y. Koji, Y. Hirayama, Y. Yamamoto, and S. Hori. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertension Res. 26(8):615–622, 2003.

    Google Scholar 

  5. Fung, Y.-C. Biomechanics: Circulation. New York: Springer, 2013.

    Google Scholar 

  6. Martin, C., W. Sun, T. Pham, and J. Elefteriades. Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta biomaterialia. 9(12):9392–9400, 2013.

    PubMed  Google Scholar 

  7. Pham, T., C. Martin, J. Elefteriades, and W. Sun. Biomechanical characterization of ascending aortic aneurysm with concomitant bicuspid aortic valve and bovine aortic arch. Acta Biomater. 9(8):7927–7936, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin, C., W. Sun, and J. Elefteriades. Patient-specific finite element analysis of ascending aorta aneurysms. Am. J. Physiol.-Heart Circ. Physiol. 308(10):H1306–H1316, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, M., H. Dong, X. Lou, G. Iannucci, E. P. Chen, B. G. Leshnower, and W. Sun. A novel anisotropic failure criterion with dispersed fiber orientations for aortic tissues. J. Biomech. Eng.142(11):111002, 2020.

    PubMed  Google Scholar 

  10. Dong, H., M. Liu, X. Lou, B. G. Leshnower, W. Sun, B. A. Ziganshin, M. A. Zafar, and J. A. Elefteriades. Ultimate tensile strength and biaxial stress–strain responses of aortic tissues—A clinical-engineering correlation. Appl. Eng. Sci.10:100101, 2022.

    Google Scholar 

  11. Iliopoulos, D. C., R. P. Deveja, E. P. Kritharis, D. Perrea, G. D. Sionis, K. Toutouzas, C. Stefanadis, and D. P. Sokolis. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med. Eng. Phys. 31(1):1–9, 2009.

    PubMed  Google Scholar 

  12. Sokolis, D. P. Layer-specific tensile strength of the human aorta: segmental variations. J. Biomech. Eng.145(6):064502, 2023.

    PubMed  Google Scholar 

  13. Horný, L., and J. Kužma. Pressure pulse wave velocity and axial prestretch in arteries. World Congr. Med. Phys. Biomed. Eng. 2019:665–669, 2018.

    Google Scholar 

  14. Ma, Y., J. Choi, A. Hourlier-Fargette, Y. Xue, H. U. Chung, J. Y. Lee, X. Wang, Z. Xie, D. Kang, and H. Wang. Relation between blood pressure and pulse wave velocity for human arteries. Proc. Natl. Acad. Sci. 115(44):11144–11149, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferruzzi, J., D. Madziva, A. Caulk, G. Tellides, and J. Humphrey. Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech. Model Mechanobiol. 17(5):1281–1295, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O’rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. College Cardiol. 50(1):1–13, 2007.

    Google Scholar 

  17. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids. 61(1):1–48, 2000.

    Google Scholar 

  18. Pejcic, S., S. M. A. Hassan, D. E. Rival, and G. Bisleri. Characterizing the Mechanical Properties of the Aortic Wall. Vessel Plus: Alhambra, 2019.

    Google Scholar 

  19. Liu, M., L. Liang, Y. Ismail, H. Dong, X. Lou, G. Iannucci, E. P. Chen, B. G. Leshnower, J. A. Elefteriades, and W. Sun. Computation of a probabilistic and anisotropic failure metric on the aortic wall using a machine learning-based surrogate model. Comput. Biol. Med. 137:104794, 2021.

    PubMed  Google Scholar 

  20. Puck, A., and H. Schürmann. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models, Failure Criteria in Fibre-Reinforced-Polymer Composites. Amsterdam: Elsevier, pp. 832–876, 2004.

    Google Scholar 

  21. Dong, H., J. Wang, and B. Karihaloo. An improved Puck’s failure theory for fibre-reinforced composite laminates including the in situ strength effect. Compos. Sci. Technol. 98:86–92, 2014.

    CAS  Google Scholar 

  22. Dong, H., and J. Wang. A criterion for failure mode prediction of angle-ply composite laminates under in-plane tension. Composite Struct. 128:234–240, 2015.

    Google Scholar 

  23. Dong, H., Z. Li, J. Wang, and B. Karihaloo. A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence. Int. J. Fatigue. 87:294–300, 2016.

    Google Scholar 

  24. Häsä, R., and S. Pinho. Failure mechanisms of biological crossed-lamellar microstructures applied to synthetic high-performance fibre-reinforced composites. J. Mech. Phys. Solids. 125:53–73, 2019.

    Google Scholar 

  25. Li, S., and Z. Ma. Strength analysis of multidirectional fiber-reinforced composite laminates with uncertainty in macromechanical properties. Phys. Mesomech. 24(3):311–318, 2021.

    Google Scholar 

  26. Li, S., Z. Ma, and Q. Yang. Progressive failure analysis of composite laminates subjected to transverse loading with augmented finite element method. Int. J. Appl. Mech. 14(4):2250038, 2022.

    Google Scholar 

  27. Li, S., and J. Wang. The stress intensity factor and propagation of an inclined crack in the central layer of a composite laminate under tension. Theor. Appl. Fract. Mech. 93:128–136, 2018.

    CAS  Google Scholar 

  28. Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface. 9(71):1275–1286, 2012.

    PubMed  Google Scholar 

  29. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3(6):15–35, 2006.

    PubMed  Google Scholar 

  30. Dong, H., and W. Sun. A novel hyperelastic model for biological tissues with planar distributed fibers and a second kind of Poisson effect. J. Mech. Phys. Solids.151:104377, 2021.

    Google Scholar 

  31. Dong, H., M. Liu, T. Qin, L. Liang, B. Ziganshin, H. Ellauzi, M. Zafar, S. Jang, J. Elefteriades, W. Sun, and R. L. Gleason. A novel computational growth framework for biological tissues: Application to growth of aortic root aneurysm repaired by the V-shape surgery. J. Mech. Behav. Biomed. Mater.127:105081, 2022.

    PubMed  Google Scholar 

  32. Liu, M., L. Liang, H. Dong, W. Sun, and R. L. Gleason. Constructing growth evolution laws of arteries via reinforcement learning. J. Mech. Phys. Solids.168:105044, 2022.

    Google Scholar 

  33. Omojola, V. O., Z. Hardnett, H. Song, H. Dong, D. J. Alexander, A. O. A. Michael, R. L. Gleason Jr., and M. O. Platt. Comparative analysis of arterial compliance in mice genetically null for cathepsins K, L or S. J. Biomech.143:111266, 2022.

    PubMed  Google Scholar 

  34. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Hoboken: Wiley, 2000.

    Google Scholar 

  35. Dong, H., J. Wang, and M. Rubin. A nonlinear cosserat interphase model for residual stresses in an inclusion and the interphase that bonds it to an infinite matrix. Int. J. Solids Struct. 62:186–206, 2015.

    Google Scholar 

  36. Dong, H., Z. Wang, T. C. O’Connor, A. Azoug, M. O. Robbins, and T. D. Nguyen. Micromechanical models for the stiffness and strength of UHMWPE macrofibrils. J. Mech. Phys. Solids. 116:70–98, 2018.

    CAS  Google Scholar 

  37. Dong, H., M. Liu, C. Martin, and W. Sun. A residual stiffness-based model for the fatigue damage of biological soft tissues. J. Mech. Phys. Solids.143:104074, 2020.

    CAS  Google Scholar 

  38. Dong, H., and Y. Hu. Harnessing fluid pre-pressure to tune the properties of phononic crystals. Extreme Mech. Lett.34:100582, 2020.

    Google Scholar 

  39. Ogden, R. W. Non-linear Elastic Deformations. North Chelmsford: Courier Corporation, 1997.

    Google Scholar 

  40. Chen, Y., C. Wen, G. Tao, and M. Bi. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities. Ann. Biomed. Eng. 40(4):871–882, 2012.

    PubMed  Google Scholar 

  41. Rogers, W. J., Y.-L. Hu, D. Coast, D. A. Vido, C. M. Kramer, R. E. Pyeritz, and N. Reichek. Age-associated changes in regional aortic pulse wave velocity. Journal of the American College of Cardiology. 38(4):1123–1129, 2001.

    CAS  PubMed  Google Scholar 

  42. Learoyd, B. M., and M. G. Taylor. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18(3):278–292, 1966.

    CAS  PubMed  Google Scholar 

  43. Sokolis, D. P., G. D. Savva, S. A. Papadodima, and S. K. Kourkoulis. Regional distribution of circumferential residual strains in the human aorta according to age and gender. J. Mech. Behav. Biomed. Mater. 67:87–100, 2017.

    PubMed  Google Scholar 

  44. Milkovich, N., A. Gkousioudi, F. Seta, B. Suki, and K. Y. Zhang. Harmonic distortion of blood pressure waveform as a measure of arterial stiffness. Front. Bioeng. Biotechnol. 10:842754, 2022.

    PubMed  PubMed Central  Google Scholar 

  45. Hughes, D., C. F. Babbs, L. Geddes, and J. Bourland. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrason. Imaging. 1(4):356–367, 1979.

    CAS  PubMed  Google Scholar 

  46. Liu, M., L. Liang, F. Sulejmani, X. Lou, G. Iannucci, E. Chen, B. Leshnower, and W. Sun. Identification of in vivo nonlinear anisotropic mechanical properties of ascending thoracic aortic aneurysm from patient-specific CT scans. Sci. Rep. 9(1):1–13, 2019.

    Google Scholar 

  47. Liu, M., L. Liang, and W. Sun. Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach. J. Mech. Behav. Biomed. Mater. 77:649–659, 2018.

    PubMed  Google Scholar 

  48. Wittek, A., W. Derwich, K. Karatolios, C. P. Fritzen, S. Vogt, T. Schmitz-Rixen, and C. Blase. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging. J. Mech. Behav. Biomed. Mater. 58:122–138, 2016.

    PubMed  Google Scholar 

  49. Wittek, A., K. Karatolios, P. Bihari, T. Schmitz-Rixen, R. Moosdorf, S. Vogt, and C. Blase. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 27:167–183, 2013.

    PubMed  Google Scholar 

  50. Dong, H., M. Liu, T. Qin, L. Liang, B. Ziganshin, H. Ellauzi, M. Zafar, S. Jang, J. Elefteriades, and W. Sun. Engineering analysis of aortic wall stress and root dilatation in the V-shape surgery for treatment of ascending aortic aneurysms. Interactive Cardiovasc. Thorac. Surg. 2022. https://doi.org/10.1093/icvts/ivac004.

    Article  Google Scholar 

  51. Liu, M., L. Liang, and W. Sun. A new inverse method for estimation of in vivo mechanical properties of the aortic wall. J. Mech. Behav. Biomed. Mater. 72:148–158, 2017.

    PubMed  PubMed Central  Google Scholar 

  52. Liu, M., L. Liang, and W. Sun. Estimation of in vivo constitutive parameters of the aortic wall using a machine learning approach. Comput. Methods Appl. Mech. Eng. 347:201–217, 2019.

    PubMed  Google Scholar 

  53. Qin, T., A. Caballero, W. Mao, B. Barrett, N. Kamioka, S. Lerakis, and W. Sun. Patient-specific analysis of bicuspid aortic valve hemodynamics using a fully coupled fluid-structure interaction (FSI) model. medRxiv. 153:S52, 2021.

    Google Scholar 

  54. Mao, W., A. Caballero, R. McKay, C. Primiano, and W. Sun. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS ONE.12(9):e0184729, 2017.

    PubMed  PubMed Central  Google Scholar 

  55. Mao, W., K. Li, and W. Sun. Fluid–structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7(4):374–388, 2016.

    PubMed  PubMed Central  Google Scholar 

  56. Qin, T., A. Caballero, R. T. Hahn, R. McKay, and W. Sun. Computational analysis of virtual echocardiographic assessment of functional mitral regurgitation for validation of proximal isovelocity surface area methods. J. Am. Soc. Echocardiogr. 34(11):1211–1223, 2021.

    PubMed  Google Scholar 

  57. Han, D., G. Liu, and S. Abdallah. An Eulerian–Lagrangian–Lagrangian method for 2D fluid-structure interaction problem with a thin flexible structure immersed in fluids. Comput. Struct.228:106179, 2020.

    Google Scholar 

  58. Han, D., G. Liu, and S. Abdallah. An Eulerian–Lagrangian–Lagrangian method for solving fluid-structure interaction problems with bulk solids. J. Comput. Phys.405:109164, 2020.

    CAS  Google Scholar 

  59. Han, D., G. Liu, and S. Abdallah. ELL for 3D FSI problems with thin flexible structures based on the continuum-based shell element. J. Fluids Struct.103:103281, 2021.

    Google Scholar 

Download references

Acknowledgments

This study is supported by NIH (R01HL155537 and R01HL142036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolph L. Gleason Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Stress Calculation

Appendix: Stress Calculation

The Cauchy stress of the arterial tissue can be expressed as [34]

$${\varvec{\sigma}}=2\varvec{F}\frac{\partial \overline{\Psi } }{\partial \overline{\varvec{C}}}{\varvec{F} }^{T}-p\varvec{I},$$
(22)

where p is a Lagrange contribution to the hydrostatic pressure, and

$$\frac{\partial \overline{\Psi } }{\partial \overline{\varvec{C}} }= {\overline{\Psi } }_{1}\varvec{I}+ {\overline{\Psi } }_{4}{\varvec{a}}_{\theta }\otimes {\varvec{a}}_{\theta }+ {\overline{\Psi } }_{4\perp }{\varvec{a}}_{z}\otimes {\varvec{a}}_{z},$$
(23)

where

$${\overline{\Psi } }_{1}=\frac{\partial \overline{\Psi } }{\partial {\overline{I} }_{1}}, {\overline{\Psi } }_{4\theta }=\frac{\partial \overline{\Psi } }{\partial {\overline{I} }_{4\theta }}, {\overline{\Psi } }_{4z}=\frac{\partial \overline{\Psi } }{\partial {\overline{I} }_{4z}}.$$
(24)

Substituting Eqs. (1)–(3) into Eq. (24), we have

$$\begin{gathered} \overline{\Psi }_{1} = \frac{c}{2} , \hfill \\ \overline{\Psi }_{4\theta } = \delta_{\theta } k_{1} \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right) \cdot \exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}, \hfill \\ \overline{\Psi }_{4z} = \delta_{z} k_{1} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right) \cdot \exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}. \hfill \\ \end{gathered}$$
(25)

For the cylindrical artery tube under inner pressure with fixed axial pre-stretch, the deformation gradient can be expressed as \(\varvec{F}=\mathrm{diag}[1/({\lambda }_{\theta }{\lambda }_{z}),{\lambda }_{\theta },{\lambda }_{z}]\). Then we have \({\overline{I} }_{4\theta }={\lambda }_{\theta }^{2}\) and \({\overline{I} }_{4z}={\lambda }_{z}^{2}\). Substituting \({\overline{I} }_{4\theta }\) and \({\overline{I} }_{4z}\) into Eq. (25) and then into Eqs. (22)–(24), together with the condition of \({\sigma }_{rr}=0\), the non-zero components of the Cauchy stress can be expressed as

$$\begin{gathered} \sigma_{\theta \theta } = c\left( {\lambda_{\theta }^{2} - \frac{1}{{\lambda_{\theta }^{2} \lambda_{z}^{2} }}} \right) + 2\delta_{\theta } k_{1} \lambda_{\theta }^{2} \zeta^{2} \left( {\lambda_{\theta }^{2} - 1} \right)\exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}, \hfill \\ \sigma_{zz} = c\left( {\lambda_{z}^{2} - \frac{1}{{\lambda_{\theta }^{2} \lambda_{z}^{2} }}} \right) + 2\delta_{z} k_{1} \lambda_{z}^{2} \left( {1 - \zeta } \right)^{2} \left( {\lambda_{z}^{2} - 1} \right)\exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}. \hfill \\ \end{gathered}$$
(26)

Further, the non-zero components of the 2nd P–K stress can be expressed as

$$\begin{gathered} S_{\theta \theta } = c\left( {1 - \frac{1}{{\lambda_{\theta }^{4} \lambda_{z}^{2} }}} \right) + 2\delta_{\theta } k_{1} \zeta^{2} \left( {\lambda_{\theta }^{2} - 1} \right)\exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}, \hfill \\ S_{zz} = c\left( {1 - \frac{1}{{\lambda_{\theta }^{2} \lambda_{z}^{4} }}} \right) + 2\delta_{z} k_{1} \left( {1 - \zeta } \right)^{2} \left( {\lambda_{z}^{2} - 1} \right)\exp \left\{ {k_{2} \left[ {\delta_{\theta } \zeta^{2} \left( {\overline{I}_{4\theta } - 1} \right)^{2} + \delta_{z} \left( {1 - \zeta } \right)^{2} \left( {\overline{I}_{4z} - 1} \right)^{2} } \right]} \right\}. \hfill \\ \end{gathered}$$
(27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Liu, M., Woodall, J. et al. Effect of Nonlinear Hyperelastic Property of Arterial Tissues on the Pulse Wave Velocity Based on the Unified-Fiber-Distribution (UFD) Model. Ann Biomed Eng 51, 2441–2452 (2023). https://doi.org/10.1007/s10439-023-03275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03275-1

Keywords

Navigation