Skip to main content
Log in

Contribution of Elastic and Collagen Fibers to the Mechanical Behavior of Bovine Nuchal Ligament

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ligamentum nuchae is a highly elastic tissue commonly used to study the structure and mechanics of elastin. This study combines imaging, mechanical testing, and constitutive modeling to examine the structural organization of elastic and collagen fibers and their contributions to the nonlinear stress–strain behavior of the tissue. Rectangular samples of bovine ligamentum nuchae cut in both longitudinal and transverse directions were tested in uniaxial tension. Purified elastin samples were also obtained and tested. It was observed that the stress–stretch response of purified elastin tissue follows a similar curve as the intact tissue initially, but the intact tissue shows a significant stiffening behavior for stretches above 1.29 with collagen engagement. Multiphoton and histology images confirm the elastin-dominated bulk of ligamentum nuchae interspersed with small bundles of collagen fibrils and sporadic collagen-rich regions with cellular components and ground substance. A transversely isotropic constitutive model that considers the longitudinal organization of elastic and collagen fibers was developed to describe the mechanical behavior of both intact and purified elastin tissue under uniaxial tension. These findings shed light on the unique structural and mechanical roles of elastic and collagen fibers in tissue mechanics and may aid in future use of ligamentum nuchae in tissue grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aaron, B. B., and J. M. Gosline. Optical properties of single elastin fibres indicate random protein conformation. Nature. 287:865–867, 1980.

    Article  CAS  PubMed  Google Scholar 

  2. Aaron, B. B., and J. M. Gosline. Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers. 20(6):1247–1260, 1981.

    Article  CAS  Google Scholar 

  3. Abramowitch, S. D., C. D. Papageorgiou, R. E. Debski, T. D. Clineff, and S. L. Woo. A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg. Sports Traumatol. Arthrosc. 11:155–162, 2003.

    Article  PubMed  Google Scholar 

  4. Buckley, M. R., J. J. Sarver, B. R. Freedman, and L. J. Soslowsky. The dynamics of collagen uncrimping and lateral contraction in tendon and the effect of ionic concentration. J. Biomech. 46(13):2242–2249, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Budras, K. D., and R. E. Habel. Bovine Anatomy. Hanover: Schlutersche, 2003.

    Google Scholar 

  6. Carton, R. W., J. Dainauskas, and J. W. Clark. Elastic properties of single elastic fibers. J. Appl. Physiol. 17(3):547–551, 1962.

    Article  CAS  PubMed  Google Scholar 

  7. Chow, M. J., et al. Progressive structural and biomechanical changes in elastin degraded aorta. Biomech. Model. Mechanobiol. 12:361–372, 2011.

    Article  Google Scholar 

  8. Chow, M. J., et al. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys. J. 106(12):2684–2692, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cleary, E. G., L. B. Sandberg, and D. S. Jackson. The changes in chemical composition during development of the bovine nuchal ligament. J. Cell Biol. 33(3):469–479, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daamen, W. F., et al. Isolation of intact elastin fibers devoid of microfibrils. Tissue Eng. 11(7–8):1168–1176, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Debelle, L., et al. The secondary structure and architecture of human elastin. Eur. J. Biochem. 258(2):533–539, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Dobrin, P. B. Mechanical properties of arteries. Physiol. Rev. 58:397–460, 1978.

    Article  CAS  PubMed  Google Scholar 

  13. Duca, L., et al. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc. Res. 110(3):298–308, 2016.

    Article  CAS  PubMed  Google Scholar 

  14. Eisner, L. E., R. Rosario, N. Andarawis-Puri, and E. M. Arruda. The role of the non-collagenous extracellular matrix in tendon and ligament mechanical behavior: a review. J Biomech. Eng. 144(5):050801, 2022.

    Article  PubMed  Google Scholar 

  15. Fang, F., and S. P. Lake. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion. J. Mech. Behav. Biomed. Mater. 63:443–455, 2016.

    Article  PubMed  Google Scholar 

  16. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissue, 2nd ed. New York: Springer, p. 244, 1993.

    Book  Google Scholar 

  17. Gardiner, J. C., and J. A. Weiss. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J. Orthop. Res. 21(6):1098–1106, 2003.

    Article  PubMed  Google Scholar 

  18. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3(6):15–35, 2006.

    Article  PubMed  Google Scholar 

  19. Gellman, K. S., and J. E. A. Bertram. The equine nuchal ligament 1: structural and material properties. Vet. Comp. Orthop. Traumatol. 15(1):01–06, 2002.

    Article  Google Scholar 

  20. Gosline, J., et al. Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. B. 357:121–132, 2002.

    Article  CAS  Google Scholar 

  21. Grant, T. M., C. Yapp, Q. Chen, et al. The mechanical, structural, and compositional changes of tendon exposed to elastase. Ann. Biomed. Eng. 43:2477–2486, 2015.

    Article  PubMed  Google Scholar 

  22. Green, E. M., et al. The structure and micromechanics of elastic tissue. Interface Focus. 4(2):20130058, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gross, J. Collagen. Sci. Am. 204:121–130, 1961.

    Article  CAS  PubMed  Google Scholar 

  24. Guerin, H. L., and D. M. Elliott. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 25(4):508–516, 2007.

    Article  PubMed  Google Scholar 

  25. Henninger, H. B., B. J. Ellis, S. A. Scott, and J. A. Weiss. Contributions of elastic fibers, collagen, and extracellular matrix to the multiaxial mechanics of ligament. J. Mech. Behav. Biomed. Mater. 99:118–126, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henninger, H. B., C. J. Underwood, S. J. Romney, G. L. Davis, and J. A. Weiss. Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament. J. Orthop. Res. 31(8):1226–1233, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Henninger, H. B., W. R. Valdez, S. A. Scott, and J. A. Weiss. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading. Acta Biomater. 25:304–312, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hewitt, J., F. Guilak, R. Glisson, and T. P. Vail. Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19:359–364, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Holzapfel, G. A., et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1):1–48, 2000.

    Article  Google Scholar 

  31. Holzapfel, G. A., and R. W. Ogden. An arterial constitutive model accounting for collagen content and cross-linking. J. Mech. Phys. Solids.136:103682, 2020.

    Article  Google Scholar 

  32. Islam, M. R., and R. C. Picu. Effect of network architecture on the mechanical behavior of random fiber networks. J. Appl. Mech.85(8):018011, 2018.

    Article  Google Scholar 

  33. Jackson, D. S., L. B. Sandberg, and E. G. Cleary. The swelling of bovine ligamentum nuchae as a function of pH. Biochem. J. 96:813–817, 1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kewley, M. A., F. S. Steven, and G. Williams. The presence of fine elastin fibrils within the elastin fibre observed by scanning electron microscopy. J. Anatomy. 123(1):129–134, 1977.

    CAS  Google Scholar 

  35. Khajeh, A., et al. Effectiveness of nuchal ligament autograft in the healing of an experimental superficial digital flexor tendon defect in equid. Vet. Res. Forum. 12(1):53–61, 2021.

    PubMed  PubMed Central  Google Scholar 

  36. Kielty, C. M., M. J. Sherratt, and C. A. Shuttleworth. Elastic fibres. J. Cell Sci. 115:2817–2828, 2002.

    Article  CAS  PubMed  Google Scholar 

  37. Kirkpatrick, S. J., M. T. Hinds, and D. D. Duncan. Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold. Tissue Eng. 9(4):645–656, 2003.

    Article  PubMed  Google Scholar 

  38. Knight, K. R., et al. A collagenous glycoprotein found in dissociative extracts of foetal bovine nuchal ligament: evidence for a relationship with type VI collagen. Biochem. J. 220(2):395–403, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koenders, M. M. J. F., et al. Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils. Biomaterials. 30(13):2425–2432, 2009.

    Article  CAS  PubMed  Google Scholar 

  40. Koens, M. J. W., et al. Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel. Acta Biomater. 6(12):4666–4674, 2010.

    Article  CAS  PubMed  Google Scholar 

  41. Koob, T. J., and K. G. Vogel. Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J. Orthop. Res. 5(3):414–424, 1987.

    Article  CAS  PubMed  Google Scholar 

  42. Li, B., and V. Daggett. Molecular basis for the extensibility of elastin. J. Muscle Res. Cell Motil. 23:561–572, 2002.

    Article  PubMed  Google Scholar 

  43. Liao, H., and S. M. Belkoff. A failure model for ligaments. J. Biomech. 32(2):183–188, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Limbert, G., and J. Middleton. A constitutive model of the posterior cruciate ligament. Med. Eng. Phys. 28(2):99–113, 2006.

    Article  PubMed  Google Scholar 

  45. Lu, Q., et al. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials. 25(22):5227–5237, 2004.

    Article  CAS  PubMed  Google Scholar 

  46. Lynch, H. A., W. Johannessen, J. P. Wu, A. Jawa, and D. M. Elliott. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125:726–731, 2003.

    Article  PubMed  Google Scholar 

  47. Marchi, B. C., C. M. Luetkemeyer, and E. M. Arruda. Evaluating continuum level descriptions of the medial collateral ligament. Int. J. Solids Struct. 138:245–263, 2018.

    Article  Google Scholar 

  48. Mattson, J. M., R. Turcotte, and Y. Zhang. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech. Model. Mechanobiol. 16(1):213–225, 2017.

    Article  PubMed  Google Scholar 

  49. Mecham, R. P. Methods in elastic tissue biology: elastin isolation and purification. Methods. 45(1):32–41, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, K. S., et al. Examining differences in local collagen fiber crimp frequency throughout mechanical testing in a developmental mouse supraspinatus tendon model. J. Biomech Eng.134(4):041004, 2012.

    Article  PubMed  Google Scholar 

  51. Morocutti, M., et al. Ultrastructure of the bovine nuchal ligament. J. Anatomy. 178:145–154, 1991.

    CAS  Google Scholar 

  52. Oakes, V. W., and B. Bialkower. Biomechanical and ultrastructural studies on the elastic wing tendon from the domestic fowl. J. Anatomy. 123(2):369–387, 1977.

    CAS  Google Scholar 

  53. Orozco, G. A., et al. The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics. Sci. Rep. 8(1):1–15, 2018.

    Article  Google Scholar 

  54. Powell, J. T., N. Vine, and M. Crossman. On the accumulation of D-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis. 97:201–209, 1992.

    Article  CAS  PubMed  Google Scholar 

  55. Quapp, K. M., and J. A. Weiss. Material characterization of human medial collateral ligament. J. Biomech. Eng. 120(6):757–763, 1998.

    Article  CAS  PubMed  Google Scholar 

  56. Rasmussen, B. L., E. Bruenger, and L. B. Sandberg. A new method for purification of mature elastin. Anal. Biochem. 61(1):255–259, 1975.

    Article  Google Scholar 

  57. Ristaniemi, A., et al. Comparison of water, hydroxyproline, uronic acid and elastin contents of bovine knee ligaments and patellar tendon and their relationships with biomechanical properties. J. Mech. Behav. Biomed. Mater. 104:103639, 2020.

  58. Rnjak, J., et al. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng. 17(2):81–91, 2011.

    Article  CAS  Google Scholar 

  59. Screen, H. R. C., and V. W. T. Cheng. The micro-structural strain response of tendon. J. Mater. Sci. 19:1–2, 2007.

    Google Scholar 

  60. Serafini-Fracassini, A., J. M. Field, and M. Spina. The macromolecular organization of the elastin fibril. J. Mol. Biol. 100(1):73–84, 1976.

    Article  CAS  PubMed  Google Scholar 

  61. Shapiro, S. D., et al. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87:1828–1834, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Starcher, B. C. Elastin and the lung. Thorax. 41:577–585, 1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stender, C. J., et al. Modeling the effect of collagen fibril alignment on ligament mechanical behavior. Biomech. Model. Mechanobiol. 17(2):543–557, 2018.

    Article  PubMed  Google Scholar 

  64. De Vita, R., and W. S. Slaughter. A structural constitutive model for the strain rate-dependent behavior of anterior cruciate ligaments. Int. J. Solids Struct. 43(6):1561–1570, 2006.

    Article  Google Scholar 

  65. De Vita, R., and W. S. Slaughter. A constitutive law for the failure behavior of medial collateral ligaments. Biomech. Model. Mechanobiol. 6:189–197, 2007.

    Article  PubMed  Google Scholar 

  66. Wang, R., J. M. Mattson, and Y. Zhang. Effect of aging on the biaxial mechanical behavior of human descending thoracic aorta: experiments and constitutive modeling considering collagen crosslinking. J. Mech. Behav. Biomed. Mater.140:105705, 2023.

    Article  CAS  PubMed  Google Scholar 

  67. Weiss, J. A., et al. Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10):845–861, 2005.

    Article  PubMed  Google Scholar 

  68. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135(1–2):107–128, 1996.

    Article  Google Scholar 

  69. Wirtschafter, Z. T., et al. Histological changes during the development of the bovine nuchal ligament. J. Cell Biol. 33(3):481–488, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, X., Wang, Y., and Zhang, Y. Transmural variation in elastin fiber orientation  distribution in the arterial wall. J. Mech. Behav. Biomed. Mater. 77:745–753, 2018.

    Article  CAS  PubMed  Google Scholar 

  71. Yu, X., Turcotte, R., Seta, F., and Zhang, Y. Micromechanics of elastic lamellae: unravelling the role of structural inhomogeneity in multi-scale arterial mechanics. J. R. Soc. Interface. 15(147):20180492, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zou, Y., and Y. Zhang. An experimental and theoretical study on the anisotropy of elastin network. Ann. Biomed. Eng. 37(8):1572–1583, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support from the National Institute of Health (2R01HL098028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhang Zhang.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halvorsen, S., Wang, R. & Zhang, Y. Contribution of Elastic and Collagen Fibers to the Mechanical Behavior of Bovine Nuchal Ligament. Ann Biomed Eng 51, 2204–2215 (2023). https://doi.org/10.1007/s10439-023-03254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03254-6

Keywords

Navigation