Skip to main content
Log in

Validating MRI-Derived Myocardial Stiffness Estimates Using In Vitro Synthetic Heart Models

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Impaired cardiac filling in response to increased passive myocardial stiffness contributes to the pathophysiology of heart failure. By leveraging cardiac MRI data and ventricular pressure measurements, we can estimate in vivo passive myocardial stiffness using personalized inverse finite element models. While it is well-known that this approach is subject to uncertainties, only few studies quantify the accuracy of these stiffness estimates. This lack of validation is, at least in part, due to the absence of ground truth in vivo passive myocardial stiffness values. Here, using 3D printing, we created soft, homogenous, isotropic, hyperelastic heart phantoms of varying geometry and stiffness and simulate diastolic filling by incorporating the phantoms into an MRI-compatible left ventricular inflation system. We estimate phantom stiffness from MRI and pressure data using inverse finite element analyses based on a Neo-Hookean model. We demonstrate that our identified softest and stiffest values of 215.7 and 512.3 kPa agree well with the ground truth of 226.2 and 526.4 kPa. Overall, our estimated stiffnesses revealed a good agreement with the ground truth (\(< 5.8\%\) error) across all models. Our results suggest that MRI-driven computational constitutive modeling can accurately estimate synthetic heart material stiffnesses in the range of 200–500 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aliotta, E., K. Moulin, P. Magrath, and D. B. Ennis. Quantifying precision in cardiac diffusion tensor imaging with second-order motion-compensated convex optimized diffusion encoding. Magn. Reson. Med. 80:1074–1087, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arunachalam, S. P., A. Arani, F. Baffour, J. A. Rysavy, P. J. Rossman, K. J. Glaser, D. S. Lake, J. D. Trzasko, A. Manduca, K. P. McGee, R. L. Ehman, and P. A. Araoz. Regional assessment of in vivo myocardial stiffness using 3D magnetic resonance elastography in a porcine model of myocardial infarction. Magn. Reson. Med. 79:361–369, 2018.

    Article  CAS  PubMed  Google Scholar 

  3. Asner, L., M. Hadjicharalambous, R. Chabiniok, D. Peresutti, E. Sammut, J. Wong, G. Carr-White, P. Chowienczyk, J. Lee, A. King, N. Smith, R. Razavi, and D. Nordsletten. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech. Model. Mechanobiol. 15:1121–1139, 2016.

    Article  PubMed  Google Scholar 

  4. Augenstein, K. F., B. R. Cowan, I. J. LeGrice, P. M. F. Nielsen, and A. A. Young. Method and apparatus for soft tissue material parameter estimation using tissue tagged Magnetic Resonance Imaging. J. Biomech. Eng. 127:148–157, 2005.

    Article  PubMed  Google Scholar 

  5. Avazmohammadi, R., J. S. Soares, D. S. Li, S. S. Raut, R. C. Gorman, and M. S. Sacks. A contemporary look at biomechanical models of myocardium. Annu. Rev. Biomed. Eng. 21:417–442, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Channer, K. S., W. Culling, P. Wilde, and J. V. Jones. Estimation of left ventricular end-diastolic pressure by pulsed Doppler ultrasound. Lancet 1:1005–1007, 1986.

    Article  CAS  PubMed  Google Scholar 

  7. Cork, T. E., L. E. Perotti, I. A. Verzhbinsky, M. Loecher, and D. B. Ennis. High-resolution ex vivo microstructural MRI after restoring ventricular geometry via 3D printing. Funct. Imaging Model. Heart 11504:177–186, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coronel, R., J. de Groot, and J. van Lieshout. Defining heart failure. Cardiovasc. Res. 50:419–422, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Dual, S. A., J. M. Zimmermann, J. Neuenschwander, N. H. Cohrs, N. Solowjowa, W. J. Stark, M. Meboldt, and M. SchmidDaners. Ultrasonic sensor concept to fit a ventricular assist device cannula evaluated using geometrically accurate heart phantoms. Artif. Organs 43:467–477, 2019.

    Article  PubMed  Google Scholar 

  10. Emig, R., C. M. Zgierski-Johnston, V. Timmermann, A. J. Taberner, M. P. Nash, P. Kohl, and R. Peyronnet. Passive myocardial mechanical properties: meaning, measurement, models. Biophys. Rev. 13:587–610, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Genet, M., M. Rausch, L. Lee, S. Choy, X. Zhao, G. Kassab, S. Kozerke, J. Guccione, and E. Kuhl. Heterogeneous growth-induced prestrain in the heart. J. Biomech. 48:2080–2089, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geuzaine, C., and J.-F. Remacle. GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79:1309–1331, 2009.

    Article  Google Scholar 

  13. Greenberg, N. L., P. M. Vandervoort, M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 280:H2507–2515, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Guccione, J. M., K. D. Costa, and A. D. McCulloch. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28:1167–1177, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Hadjicharalambous, M., C. T. Stoeck, M. Weisskopf, N. Cesarovic, E. Ioannou, V. Vavourakis, and D. A. Nordsletten. Investigating the reference domain influence in personalised models of cardiac mechanics: effect of unloaded geometry on cardiac biomechanics. Biomech. Model Mechanobiol. 20:1579–1597, 2021.

    Article  PubMed  Google Scholar 

  16. Henning, R. J. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World J. Cardiol. 12:7–25, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hopf, R., L. Bernardi, J. Menze, M. Zündel, E. Mazza, and A. E. Ehret. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer. J. Mech. Behav. Biomed. Mater. 60:425–437, 2016.

    Article  CAS  PubMed  Google Scholar 

  18. Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Jöbsis, P. D., H. Ashikaga, H. Wen, E. C. Rothstein, K. A. Horvath, E. R. McVeigh, and R. S. Balaban. The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. Am. J. Physiol. Heart Circ. Physiol. 293:H3379–3387, 2007.

    Article  PubMed  Google Scholar 

  20. Johnston, I. D., D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.

    Article  CAS  Google Scholar 

  21. Kanzow, C., N. Yamashita, and M. Fukushima. Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math. 172:375–397, 2004.

    Article  Google Scholar 

  22. Kass, D. A., J. G. F. Bronzwaer, and W. J. Paulus. What mechanisms underlie diastolic dysfunction in heart failure? Circ. Res. 94:1533–1542, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Kolawole, F. O., M. Peirlinck, T. E. Cork, V. Y. Wang, S. A. Dual, M. E. Levenston, E. Kuhl, and D. B. Ennis. A framework for evaluating myocardial stiffness using 3D-printed heart phantoms. In: Functional Imaging and Modeling of the Heart, edited by D. B. Ennis, L. E. Perotti, and V. Y. Wang. Cham: Springer, 2021, pp. 305–314.

    Chapter  Google Scholar 

  24. Krishnamurthy, A., C. T. Villongco, J. Chuang, L. R. Frank, V. Nigam, E. Belezzuoli, P. Stark, D. E. Krummen, S. Narayan, J. H. Omens, A. D. McCulloch, and R. C. Kerckhoffs. Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244:4–21, 2013.

    Article  PubMed  Google Scholar 

  25. Land, S., V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, T. E. Fastl, T. Fritz, H. Gao, A. Gizzi, B. E. Griffith, D. E. Hurtado, R. Krause, X. Luo, M. P. Nash, S. Pezzuto, G. Plank, S. Rossi, D. Ruprecht, G. Seemann, N. P. Smith, J. Sundnes, J. J. Rice, N. Trayanova, D. Wang, Z. JennyWang, and S. A. Niederer. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc. Math. Phys. Eng. Sci. 471:20150641, 2015.

    PubMed  PubMed Central  Google Scholar 

  26. Legland, D., I. Arganda-Carreras, and P. Andrey. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534, 2016.

    Article  CAS  PubMed  Google Scholar 

  27. Lippi, G., and F. Sanchis-Gomar. Global epidemiology and future trends of heart failure. AME Med. J. 5:15, 2020.

    Article  Google Scholar 

  28. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:11005, 2012.

    Article  PubMed Central  Google Scholar 

  29. Maggioni, A. P., U. Dahlström, G. Filippatos, O. Chioncel, M. Crespo Leiro, J. Drozdz, F. Fruhwald, L. Gullestad, D. Logeart, G. Fabbri, R. Urso, M. Metra, J. Parissis, H. Persson, P. Ponikowski, M. Rauchhaus, A. A. Voors, O. W. Nielsen, F. Zannad, L. Tavazzi, and Heart Failure Association of the European Society of Cardiology (HFA). EURObservational research programme: regional differences and 1-year follow-up results of the heart failure pilot survey (ESC-HF pilot). Eur. J. Heart. Fail. 15:808–817, 2013.

  30. Meyer, F., and S. Beucher. Morphological segmentation. J. Vis. Commun. Image Represent. 1:21–46, 1990.

    Article  Google Scholar 

  31. Mojsejenko, D., J. R. McGarvey, S. M. Dorsey, J. H. Gorman, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech. Model. Mechanobiol. 14:633–647, 2015.

    Article  PubMed  Google Scholar 

  32. Namana, V., S. S. Gupta, N. Sabharwal, and G. Hollander. Clinical significance of atrial kick. QJM 111:569–570, 2018.

    Article  CAS  PubMed  Google Scholar 

  33. Nikou, A., S. M. Dorsey, J. R. McGarvey, J. H. Gorman, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk. Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart. Comput. Methods Biomech. Biomed. Eng. 19:1714–1720, 2016.

    Article  Google Scholar 

  34. Omens, J. H., and Y. C. Fung. Residual strain in rat left ventricle. Circ. Res. 66:37–45, 1990.

    Article  CAS  PubMed  Google Scholar 

  35. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 9:62–66, 1979.

    Article  Google Scholar 

  36. Palchesko, R. N., L. Zhang, Y. Sun, and A. W. Feinberg. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7:e51499, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palit, A., S. K. Bhudia, T. N. Arvanitis, G. A. Turley, and M. A. Williams. In vivo estimation of passive biomechanical properties of human myocardium. Med. Biol. Eng. Comput. 56:1615–1631, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peirlinck, M., F. S. Costabal, J. Yao, J. M. Guccione, S. Tripathy, Y. Wang, D. Ozturk, P. Segars, T. M. Morrison, S. Levine, and E. Kuhl. Precision medicine in human heart modeling: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 20:803–831, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peirlinck, M., M. De Beule, P. Segers, and N. Rebelo. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J. Mech. Behav. Biomed. Mater. 85:124–133, 2018.

    Article  PubMed  Google Scholar 

  40. Peirlinck, M., F. SahliCostabal, K. L. Sack, J. S. Choy, G. S. Kassab, J. M. Guccione, M. De Beule, P. Segers, and E. Kuhl. Using machine learning to characterize heart failure across the scales. Biomech. Model. Mechanobiol. 18:1987–2001, 2019.

    Article  CAS  PubMed  Google Scholar 

  41. Peirlinck, M., K. L. Sack, P. De Backer, P. Morais, P. Segers, T. Franz, and M. De Beule. Kinematic boundary conditions substantially impact in silico ventricular function. Int. J. Numer. Methods Biomed. Eng. 35:e3151, 2019.

    Article  Google Scholar 

  42. Pfaller, M. R., J. M. Hörmann, M. Weigl, A. Nagler, R. Chabiniok, C. Bertoglio, and W. A. Wall. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech. Model. Mechanobiol. 18:503–529, 2019.

    Article  PubMed  Google Scholar 

  43. Rodríguez-Cantano, R., J. Sundnes, and M. E. Rognes. Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response. Int. J. Numer. Methods Biomed. Eng. 35:e3178, 2019.

    Article  Google Scholar 

  44. Røe, Å. T., J. M. Aronsen, K. Skårdal, N. Hamdani, W. A. Linke, H. E. Danielsen, O. M. Sejersted, I. Sjaastad, and W. E. Louch. Increased passive stiffness promotes diastolic dysfunction despite improved Ca$^{2+}$ handling during left ventricular concentric hypertrophy. Cardiovasc. Res. 113:1161–1172, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sakata, Y., T. Ohtani, Y. Takeda, K. Yamamoto, and T. Mano. Left ventricular stiffening as therapeutic target for heart failure with preserved ejection fraction. Circ. J. 77:886–892, 2013.

    Article  CAS  PubMed  Google Scholar 

  46. Savarese, G., and L. H. Lund. Global public health burden of heart failure. Card. Fail. Rev. 3:7–11, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sidebotham, D., and I. J. Le Grice. Chapter 1—physiology and pathophysiology. In: Cardiothoracic Critical Care, edited by D. Sidebotham, A. Mckee, M. Gillham, and J. H. Levy, Philadelphia: Butterworth-Heinemann, 2007, pp. 3–27.

    Chapter  Google Scholar 

  48. Stehlin, E. F., D. McCormick, S. C. Malpas, B. P. Pontré, P. A. Heppner, and D. M. Budgett. MRI interactions of a fully implantable pressure monitoring device. J. Magn. Reson. Imaging 42:1441–1449, 2015.

    Article  PubMed  Google Scholar 

  49. Stimm, J., D. A. Nordsletten, J. Jilberto, R. Miller, E. Berberoğlu, S. Kozerke, and C. T. Stoeck. Personalization of biomechanical simulations of the left ventricle by in vivo cardiac DTI data: impact of fiber interpolation methods. Front. Physiol. 13:1042537, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suinesiaputra, A., B. R. Cowan, A. O. Al-Agamy, M. A. Elattar, N. Ayache, A. S. Fahmy, A. M. Khalifa, P. Medrano-Gracia, M.-P. Jolly, A. H. Kadish, D. C. Lee, J. Margeta, S. K. Warfield, and A. A. Young. A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med. Image Anal. 18:50–62, 2014.

    Article  PubMed  Google Scholar 

  51. Trankle, C., J. M. Canada, L. Buckley, S. Carbone, D. Dixon, R. Arena, B. Van Tassell, and A. Abbate. Impaired myocardial relaxation with exercise determines peak aerobic exercise capacity in heart failure with preserved ejection fraction. ESC Heart Fail. 4:351–355, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Virani, S. S., A. Alonso, H. J. Aparicio, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. P. Carson, A. M. Chamberlain, S. Cheng, F. N. Delling, M. S. V. Elkind, K. R. Evenson, J. F. Ferguson, D. K. Gupta, S. S. Khan, B. M. Kissela, K. L. Knutson, C. D. Lee, T. T. Lewis, J. Liu, M. S. Loop, P. L. Lutsey, J. Ma, J. Mackey, S. S. Martin, D. B. Matchar, M. E. Mussolino, S. D. Navaneethan, A. M. Perak, G. A. Roth, Z. Samad, G. M. Satou, E. B. Schroeder, S. H. Shah, C. M. Shay, A. Stokes, L. B. VanWagner, N.-Y. Wang, C. W. Tsao, and American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143:e254–e743, 2021.

  53. Walker, J. C., M. B. Ratcliffe, P. Zhang, A. W. Wallace, E. W. Hsu, D. A. Saloner, and J. M. Guccione. Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J. Thorac. Cardiovasc. Surg. 135:1094–1102, 1102.e1–2, 2008.

  54. Wang, B., and S. Krause. Properties of dimethylsiloxane microphases in phase-separated dimethylsiloxane block copolymers. Macromolecules 20:2201–2208, 1987.

    Article  CAS  Google Scholar 

  55. Wang, V. Y., H. I. Lam, D. B. Ennis, B. R. Cowan, A. A. Young, and M. P. Nash. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13:773–784, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, V. Y., P. M. F. Nielsen, and M. P. Nash. Image-based predictive modeling of heart mechanics. Annu. Rev. Biomed. Eng. 17:351–383, 2015.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Z. J., V. Y. Wang, C. P. Bradley, M. P. Nash, A. A. Young, and J. J. Cao. Left ventricular diastolic myocardial stiffness and end-diastolic myofibre stress in human heart failure using personalised biomechanical analysis. J. Cardiovasc. Transl. Res. 11:346–356, 2018.

    Article  PubMed  Google Scholar 

  58. Watanabe, S., J. Shite, H. Takaoka, T. Shinke, Y. Tanino, H. Otake, D. Matsumoto, D. Ogasawara, T. Sawada, K.-I. Hirata, and M. Yokoyama. Predictive importance of left ventricular myocardial stiffness for the prognosis of patients with congestive heart failure. J. Cardiol. 58:245–252, 2011.

    Article  PubMed  Google Scholar 

  59. Xi, J., P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi, and N. P. Smith. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17:133–146, 2013.

    Article  PubMed  Google Scholar 

  60. Zhang, W., D. S. Li, T. Bui-Thanh, and M. S. Sacks. Simulation of the 3D hyperelastic behavior of ventricular myocardium using a finite-element based neural-network approach. Comput. Methods. Appl. Mech. Eng. 394:114871, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu, Y., X. Luo, H. Gao, C. McComb, and C. Berry. A numerical study of a heart phantom model. Int. J. Comput. Math. 91:1535–1551, 2014.

    Article  Google Scholar 

  62. Zile, M. R., C. F. Baicu, and W. H. Gaasch. Diastolic heart failure-abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350:1953–1959, 2004.

    Article  CAS  PubMed  Google Scholar 

  63. Zile, M. R., C. F. Baicu, J. S. Ikonomidis, R. E. Stroud, P. J. Nietert, A. D. Bradshaw, R. Slater, B. M. Palmer, P. Van Buren, M. Meyer, M. M. Redfield, D. A. Bull, H. L. Granzier, and M. M. LeWinter. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zile, M. R., W. H. Gaasch, J. D. Carroll, M. D. Feldman, G. P. Aurigemma, G. L. Schaer, J. K. Ghali, and P. R. Liebson. Heart failure with a normal ejection fraction. Circulation 104:779–782, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Zimmermann, J., M. Loecher, F. O. Kolawole, K. Bäumler, K. Gifford, S. A. Dual, M. Levenston, A. L. Marsden, and D. B. Ennis. On the impact of vessel wall stiffness on quantitative flow dynamics in a synthetic model of the thoracic aorta. Sci. Rep. 11:6703, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

F.K. receives research support from the Stanford Bio-X Stanford Interdisciplinary Graduate Fellowship. This project was funded, in part, by NIH R01 HL131823 to D.B.E.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikunwa O. Kolawole.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(PDF 3829 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolawole, F.O., Peirlinck, M., Cork, T.E. et al. Validating MRI-Derived Myocardial Stiffness Estimates Using In Vitro Synthetic Heart Models. Ann Biomed Eng 51, 1574–1587 (2023). https://doi.org/10.1007/s10439-023-03164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03164-7

Keywords

Navigation