Skip to main content
Log in

The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influence of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here, we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial–myocardial interaction can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model not only can provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial–myocardial interaction which cannot be assessed in clinical measurements yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Arutunyan AH (2015) Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 308(11):H1317–H1320 PMID: 25795710

    Article  Google Scholar 

  • Arvidsson PM, Carlsson M, Kovács SJ, Arheden H (2015) Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 309(6):H1094–H1096 PMID: 26374902

    Article  Google Scholar 

  • Asner L et al (2016) Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol 15(5):1121–1139

    Article  Google Scholar 

  • Augustin CM et al (2016) Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J Comput Phys 305:622–646

    Article  MathSciNet  MATH  Google Scholar 

  • Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living heart project: a robust and integrative simulator for human heart function. Eur J Mech 48:38–47

    Article  MathSciNet  MATH  Google Scholar 

  • Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Medical image computing and computer-assisted intervention–MICCAI 2001. Springer, Berlin

    Google Scholar 

  • Bowman AW, Kovács SJ (2003) Assessment and consequences of the constant-volume attribute of the four-chambered heart. Am J Physiol Heart Circul Physiol 285(5):H2027–H2033

    Article  Google Scholar 

  • Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H (2007) Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 292(3):H1452–H1459

    Article  Google Scholar 

  • Chabiniok R et al (2012) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5):609–630

    Article  Google Scholar 

  • Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng 10(2):189–211

    Article  Google Scholar 

  • Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60(2):371–375

    Article  MathSciNet  MATH  Google Scholar 

  • Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circul Physiol 283(6):H2650–H2659

    Article  Google Scholar 

  • Doost SN, Ghista D, Su B, Zhong L, Morsi YS (2016) Heart blood flow simulation: a perspective review. BioMed Eng OnLine 15(1):101

    Article  Google Scholar 

  • Emilsson K, Brudin L, Wandt B (2001) The mode of left ventricular pumping: is there an outer contour change in addition to the atrioventricular plane displacement? Clin Physiol 21(4):437–446

    Article  Google Scholar 

  • Eriksson T, Prassl A, Plank G, Holzapfel G (2013) Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids 18(6):592–606

    Article  MathSciNet  Google Scholar 

  • Fritz T, Wieners C, Seemann G, Steen H, Dössel O (2013) Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol 13(3):1–15

    Google Scholar 

  • Fujii K et al (1994) Effect of left ventricular contractile performance on passive left atrial filling–clinical study using radionuclide angiography. Clin Cardiol 17(5):258–262

    Article  Google Scholar 

  • Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42(11):1732–1739

    Article  Google Scholar 

  • Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1):52–72

    Article  MATH  Google Scholar 

  • Geuzaine C, Remacle J-F (2009) Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  • Gil D et al (2013) What a difference in biomechanics cardiac fiber makes. In: Camara O, Mansi T, Pop M, Rhode K, Sermesant M, Young A (eds). Statistical atlases and computational models of the heart. Imaging and modelling challenges, Lecture Notes in Computer Science, vol 7746. Springer, Berlin, pp 253–260

  • Glantz SA et al (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 42(3):433–41

    Article  Google Scholar 

  • Gültekin O, Sommer G, Holzapfel GA (2016) An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput Methods Biomech Biomed Eng 19(15):1647–1664

    Article  Google Scholar 

  • Hammond HK, White FC, Bhargava V, Shabetai R (1992) Heart size and maximal cardiac output are limited by the pericardium. Am J Physiol Heart Circ Physiol 263(6):H1675–H1681

    Article  Google Scholar 

  • Heiberg E et al (2010) Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging 10(1):1

    Article  Google Scholar 

  • Hills BA, Butler BD (1985) Phospholipids identified on the pericardium and their ability to impart boundary lubrication. Ann Biomed Eng 13(6):573–586

    Article  Google Scholar 

  • Hirschvogel M, Bassilious M, Jagschies L, Wildhirt S, Gee MW (2016) A monolithic 3D–0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int J Numer Methods Biomed Eng 33(8):e2842

    Article  MathSciNet  Google Scholar 

  • Holt JP (1970) The normal pericardium. Am J Cardiol 26(5):455–465

    Article  Google Scholar 

  • Holt JP, Rhode EA, Kines H, Ruth H (1960) Pericardial and ventricular pressure. Circ Res 8(6):1171–1181

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R S A Math Phys Eng Sci 367(1902):3445–3475

    Article  MathSciNet  MATH  Google Scholar 

  • Hörmann JM et al (2017) Multiphysics modeling of the atrial systole under standard ablation strategies. Cardiovasc Eng Technol 8(2):205–218

    Article  Google Scholar 

  • Hörmann JM et al (2018) An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology. Int J Numer Methods Biomed Eng 34(5):e2959

    Article  MathSciNet  Google Scholar 

  • Hörmann JM, Pfaller MR, Bertoglio C, Avena L, Wall WA (2018) Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image-registration. Int J Numer Methods Biomed Eng. arXiv:1812.02587

  • Iaizzo PA (2015) Handbook of cardiac anatomy, physiology, and devices. Springer, Berlin

    Book  Google Scholar 

  • Jöbsis PD et al (2007) The visceral pericardium: macromolecular structure and contribution to passive mechanical properties of the left ventricle. Am J Physiol Heart Circ Physiol 293(6):H3379–H3387

    Article  Google Scholar 

  • Kerckhoffs RC et al (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1):1–18

    Article  Google Scholar 

  • Land S, Niederer SA (2017) Influence of atrial contraction dynamics on cardiac function. Int J Numer Methods Biomed Eng

  • Lee JM, Boughner DR (1985) Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57(3):475–481

  • Lee LC, Sundnes J, Genet M, Wenk JF, Wall ST (2016) An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech Model Mechanobiol 15(4):791–803

    Article  Google Scholar 

  • Maksuti E, Bjällmark A, Broomé M (2015) Modelling the heart with the atrioventricular plane as a piston unit. Med Eng Phys 37(1):87–92

    Article  Google Scholar 

  • Mansi T (2010) Image-based physiological and statistical models of the heart: application to tetralogy of Fallot. Ph.d thesis, École Nationale Supérieure des Mines de Paris

  • Marchesseau S, Delingette H, Sermesant M, Ayache N (2013) Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech Model Mechanobiol 12(4):815–831

    Article  Google Scholar 

  • Martini FH, Timmons MJ (2015) Human anatomy. Pearson Education, London

    Google Scholar 

  • Moireau P et al (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1–2):1–18

    Article  MathSciNet  Google Scholar 

  • Moireau P et al (2013) Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech Model Mechanobiol 12(3):475–496

    Article  Google Scholar 

  • Nagler A, Bertoglio C, Stoeck CT, Kozerke S, Wall WA (2017) Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Med Image Anal 39:56–77

    Article  Google Scholar 

  • Nagler A, Bertoglio C, Ortiz M, Wall WA (2016) A spatially varying mathematical representation of the biventricular cardiac fiber architecture. Center for Mathematical Modeling, Universidad de Chile, Technical report, Institute for Computational Mechanics, Technische Universität München

    Google Scholar 

  • Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Google Scholar 

  • Nikou A, Gorman RC, Wenk JF (2016) Sensitivity of left ventricular mechanics to myofiber architecture: a finite element study. Proc Inst Mech Eng Part H J Eng Med 230(6):594–598 PMID: 26975892

    Article  Google Scholar 

  • Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8(3):253–261

    Article  Google Scholar 

  • Rabkin S, Hsu P (1975) Mathematical and mechanical modeling of stress-strain relationship of pericardium. Am J Physiol 229(4):896–900

    Article  Google Scholar 

  • Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287

    Article  Google Scholar 

  • Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28):1743–1759

    Article  MathSciNet  Google Scholar 

  • Santamore WP, Constantinescu MS, Bogen D, Johnston WE (1990) Nonuniform distribution of normal pericardial fluid. Basic Res Cardiol 85(6):541–549

    Article  Google Scholar 

  • Santiago A et al (2018) Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Methods Biomed Eng 34(12):e3140

    Article  MathSciNet  Google Scholar 

  • Sermesant M (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1):201–215

    Article  Google Scholar 

  • Shabetai R (2003) The pericardium. Springer, New York

    Book  Google Scholar 

  • Shi Y, Lawford P, Hose R (2011) Review of 0-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 10:33

    Article  Google Scholar 

  • Smiseth OA, Frais MA, Kingma I, Smith ER, Tyberg JV (1985) Assessment of pericardial constraint in dogs. Circulation 71(1):158–64

    Article  Google Scholar 

  • Sommer G (2015) Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater 24:172–192

    Article  Google Scholar 

  • Spodick DH (1983) The normal and diseased pericardium: current concepts of pericardial physiology, diagnosis and treatment. J Am Coll Cardiol 1(1):240–251

    Article  Google Scholar 

  • Spodick DH (1996) The pericardium: a comprehensive textbook. Informa Health Care, London

    Google Scholar 

  • Standring S (2015) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier, Amsterdam

    Google Scholar 

  • Sudak F (1965) Intrapericardial and intracardiac pressures and the events of the cardiac cycle in Mustelus canis (Mitchill). Comp Biochem Physiol 14(4):689–705

    Article  Google Scholar 

  • Sutton J, Gibson DG (1977) Measurement of postoperative pericardial pressure in man. Br Heart J 39(1):1–6

    Article  Google Scholar 

  • Tyberg JV et al (1986) The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 73(3):428–32

    Article  Google Scholar 

  • Ubbink S, Bovendeerd P, Delhaas T, Arts T, Vosse F (2006) Towards model-based analysis of cardiac MR tagging data: Relation between left ventricular shear strain and myofiber orientation. Med Image Anal 10(4):632–641. Special issue on functional imaging and modelling of the heart (FIMH 2005)

  • Uribe S et al (2008) Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 248(2):606–614

    Article  Google Scholar 

  • Wall WA et al (2018) Baci: a parallel multiphysics simulation environment. Technical report, Institute for Computational Mechanics, Technische Universität München

  • Westerhof N, Lankhaar J-W, Westerhof BE (2008) The arterial windkessel. Med Biol Eng Comput 47(2):131–141

    Article  Google Scholar 

  • Willenheimer R, Cline C, Erhardt L, Israelsson B (1997) Left ventricular atrioventricular plane displacement: an echocardiographic technique for rapid assessment of prognosis in heart failure. Heart 78(3):230–236

    Article  Google Scholar 

  • Wong KCL et al (2010) Cardiac motion estimation using a proActive deformable model: evaluation and sensitivity analysis. Springer, Berlin

    Google Scholar 

  • Yin FC, Strumpf RK, Chew PH, Zeger SL (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J Biomech 20(6):577–589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Pfaller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cristóbal Bertoglio and Wolfgang A. Wall are joint last authors.

Appendix

Appendix

1.1 Comparison of spring formulations

We show in Sect. 2.1 how the pericardial boundary condition in case pericardium can be derived from adhesive sliding contact by introducing several simplifications. To justify the simplifications made by our pericardial boundary condition, we use a very simple geometry of a hollow half-ellipsoid with \(\pm 60^\circ \) fibers, which roughly represents the shape of the left ventricle, see Fig. 22a. It is able to show the consequences of each approach while being simple enough to isolate the effects of the boundary condition. The parameters of the ellipsoid model are given in Table 3. We use the same active stress model introduced in (8) to mimic cardiac contraction. All three simulations use the same contractility parameter.

Table 3 Overview of material parameters in ellipsoid model

As in Sect. 3, case pericardium utilizes the pericardial boundary condition proposed in (5) using the gap (4). Additionally, we introduce case pseudo-contact, which uses the definition of the gap in (3) based on projection and the current normal vector to the epicardium. Case free has homogeneous zero Neumann boundary conditions on the whole epicardial surface.

The results of the contraction simulation are shown in Fig. 22b, c at end-systole. Displayed are the reference configuration and all three boundary condition cases for a cross section of the ellipsoid. Figure 22b shows in a frontal view the shortening of the ellipsoid with visible epi- and endocardial contours. While cases pericardium and pseudo-contact are very similar with little differences only in radial direction, case free exhibits much less longitudinal shortening. There is almost no longitudinal shortening but a translational movement of the whole geometry instead.

Figure 22b shows the epicardial contour of the ellipsoid in a top-down view to observe the twisting motion of the ellipsoid. All three boundary condition cases are very similar. This confirms that the normal springs in cases pericardium and pseudo-contact in fact allow tangential sliding and do not prohibit any rotational movement, as they are very similar to case free. Furthermore, the similarity of cases pericardium and pseudo-contact shows that the simplified spring formulation (4) in case pericardium is sufficient to represent the effects of the pericardium compared to the more detailed formulation (3) in case pseudo-contact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfaller, M.R., Hörmann, J.M., Weigl, M. et al. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech Model Mechanobiol 18, 503–529 (2019). https://doi.org/10.1007/s10237-018-1098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1098-4

Keywords

Navigation