Skip to main content
Log in

In Vivo Changes in Dynamic Adjacent Segment Motion 1 Year After One and Two-Level Cervical Arthrodesis

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical cadaver testing indicates adjacent segment motion increases after one-level anterior cervical spine arthrodesis, and two-level arthrodesis exacerbates these effects. There is little in vivo evidence to support those biomechanical studies. The purpose of this study was to assess the effects of one- and two-level cervical arthrodesis on adjacent segment motion. Fifty patients received either one-level C56 arthrodesis or two-level C456 or C567 arthrodesis and were tested preoperatively (PRE) and 1 year postoperatively (1YR-POST) along with 23 asymptomatic controls. A validated CT model-based tracking technique was used to measure 3D vertebral motion from biplane radiographs collected during dynamic flexion-extension and axial rotation of the cervical spine. Head and adjacent segment intervertebral end-range range of motion (ROM) and mid-range ROM were compared between one-level and two-level arthrodesis patients and controls. Small (2.3° or less) but non-significant increases in adjacent segment end-range ROM were observed from PRE to 1YR-POST. Mid-range flexion-extension ROM in the C67 motion segment inferior to the arthrodesis and mid-range axial rotation ROM in the C45 motion segment superior to the arthrodesis increased from PRE to 1YR-POST (all p < 0.022). This study provides in vivo evidence that contradicts long-held beliefs that adjacent segment end-range ROM increases appreciably after anterior cervical arthrodesis and that two-level arthrodesis exacerbates these effects. Mid-range ROM appears to be more useful than end-range ROM for detecting early changes in adjacent segment motion after cervical spine arthrodesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams M. A. and P. J. Roughley. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31: 2151–2161, 2006.

  2. Ahn, P. G., K. N. Kim, S. W. Moon, and K. S. Kim. Changes in cervical range of motion and sagittal alignment in early and late phases after total disc replacement: radiographic follow-up exceeding 2 years. J. Neurosurg. Spine. 11:688–695, 2009.

    Article  Google Scholar 

  3. Anderst W. J., E. Baillargeon, W. F. Donaldson, 3rd, J. Y. Lee and J. D. Kang. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement. Spine (Phila Pa 1976) 36: E393-400, 2011.

  4. Anderst, W., W. Donaldson, J. Lee, and J. Kang. Cervical disc deformation during flexion-extension in asymptomatic controls and single-level arthrodesis patients. J. Orthop. Res. 31:1881–1889, 2013.

    Article  Google Scholar 

  5. Anderst, W. J., W. F. Donaldson 3rd., J. Y. Lee, and J. D. Kang. Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J. Biomech. 48:1286–1293, 2015.

    Article  Google Scholar 

  6. Anderst, W., R. Zauel, J. Bishop, E. Demps, and S. Tashman. Validation of three-dimensional model-based tibio-femoral tracking during running. Med. Eng. Phys. 31:10–16, 2009.

    Article  Google Scholar 

  7. Auerbach J. D., O. A. Anakwenze, A. H. Milby, B. S. Lonner and R. A. Balderston. Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion. Spine (Phila Pa 1976) 36: E1593-1599, 2011.

  8. Baba H., N. Furusawa, S. Imura, N. Kawahara, H. Tsuchiya and K. Tomita. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine (Phila Pa 1976) 18: 2167–2173, 1993.

  9. Baillargeon, E., and W. J. Anderst. Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J. Biomech. 46:670–676, 2013.

    Article  Google Scholar 

  10. Bey, M. J., R. Zauel, S. K. Brock, and S. Tashman. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J. Biomech. Eng. 128:604–609, 2006.

    Article  Google Scholar 

  11. Bible, J. E., D. Biswas, C. P. Miller, P. G. Whang, and J. N. Grauer. Normal functional range of motion of the cervical spine during 15 activities of daily living. J. Spinal. Disord. Tech. 23:15–21, 2010.

    Article  Google Scholar 

  12. Chen S. R., C. M. LeVasseur, S. Pitcairn, A. S. Kanter, D. O. Okonkwo, J. D. Shaw, W. F. Donaldson, J. Y. Lee and W. J. Anderst. Surgery related factors do not affect short-term adjacent segment kinematics after anterior cervical arthrodesis. Spine (Phila Pa 1976) 2021.

  13. Cobian D. G., A. C. Sterling, P. A. Anderson and B. C. Heiderscheit. Task-specific frequencies of neck motion measured in healthy young adults over a five-day period. Spine (Phila Pa 1976) 34: E202-207, 2009.

  14. Couch B. K., R. A. Wawrose, C. M. LeVasseur, S. W. Pitcairn, J. D. Shaw, W. F. Donaldson, J. Y. Lee and W. J. Anderst. Residual motion and graft type do not influence patient-reported outcomes following one- or two-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 46: E817-e825, 2021.

  15. Cunningham, B. W., N. Hu, C. M. Zorn, and P. C. McAfee. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics. Spine J. 10:341–349, 2010.

    Article  Google Scholar 

  16. Eck J. C., S. C. Humphreys, T. H. Lim, S. T. Jeong, J. G. Kim, S. D. Hodges and H. S. An. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976) 27: 2431–2434, 2002.

  17. Fineberg S. J., M. Oglesby, A. A. Patel and K. Singh. Incidence and mortality of perioperative cardiac events in cervical spine surgery. Spine (Phila Pa 1976) 38: 1268–1274, 2013.

  18. Fuller D. A., J. S. Kirkpatrick, S. E. Emery, R. G. Wilber and D. T. Davy. A kinematic study of the cervical spine before and after segmental arthrodesis. Spine (Phila Pa 1976) 23: 1649–1656, 1998.

  19. Hilibrand, A. S., G. D. Carlson, M. A. Palumbo, P. K. Jones, and H. H. Bohlman. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J. Bone Jt. Surg. Am. 81:519–528, 1999.

    Article  CAS  Google Scholar 

  20. Kirkaldy-Willis W. H., J. H. Wedge, K. Yong-Hing and J. Reilly. Pathology and pathogenesis of lumbar spondylosis and stenosis. Spine (Phila Pa 1976) 3: 319–328, 1978.

  21. Lawrence B. D., A. S. Hilibrand, E. D. Brodt, J. R. Dettori and D. S. Brodke. Predicting the risk of adjacent segment pathology in the cervical spine: a systematic review. Spine (Phila Pa 1976) 37: S52–S64, 2012.

  22. Malakoutian, M., D. Volkheimer, J. Street, M. F. Dvorak, H. J. Wilke, and T. R. Oxland. Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur. Spine J. 24:1865–1881, 2015.

    Article  Google Scholar 

  23. Martin, D. E., N. J. Greco, B. A. Klatt, V. J. Wright, W. J. Anderst, and S. Tashman. Model-based tracking of the hip: implications for novel analyses of hip pathology. J. Arthroplasty. 26:88–97, 2011.

    Article  Google Scholar 

  24. Matsunaga S., S. Kabayama, T. Yamamoto, K. Yone, T. Sakou and K. Nakanishi. Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976) 24: 670–675, 1999.

  25. Panjabi, M. M. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin. Biomech. (Bristol, Avon). 22:257–265, 2007.

    Article  Google Scholar 

  26. Park D. K., E. L. Lin and F. M. Phillips. Index and adjacent level kinematics after cervical disc replacement and anterior fusion: in vivo quantitative radiographic analysis. Spine (Phila Pa 1976) 36: 721–730, 2011.

  27. Prasarn, M. L., D. Baria, E. Milne, L. Latta, and W. Sukovich. Adjacent-level biomechanics after single versus multilevel cervical spine fusion. J. Neurosurg. Spine. 16:172–177, 2012.

    Article  Google Scholar 

  28. Ragab, A. A., A. J. Escarcega, and T. A. Zdeblick. A quantitative analysis of strain at adjacent segments after segmental immobilization of the cervical spine. J. Spinal Disord. Technol. 19:407–410, 2006.

    Article  Google Scholar 

  29. Reitman C. A., J. A. Hipp, L. Nguyen and S. I. Esses. Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine (Phila Pa 1976) 29: E221-226, 2004.

  30. Schwab J. S., D. J. Diangelo and K. T. Foley. Motion compensation associated with single-level cervical fusion: where does the lost motion go? Spine (Phila Pa 1976) 31: 2439–2448, 2006.

  31. Song, K. J., B. W. Choi, T. S. Jeon, K. B. Lee, and H. Chang. Adjacent segment degenerative disease: is it due to disease progression or a fusion-associated phenomenon? Comparison between segments adjacent to the fused and non-fused segments. Eur. Spine J. 20:1940–1945, 2011.

    Article  Google Scholar 

  32. Tashman S., J. Princehorn, S. Pennatto and W. Anderst. Bi-plane X-ray imaging system. United States 2010.

  33. Treece, G. M., R. W. Prager, and A. H. Gee. Regularised marching tetrahedra: improved iso-surface extraction. Comput. Graph. 23:583–598, 1999.

    Article  Google Scholar 

  34. Volkheimer, D., M. Malakoutian, T. R. Oxland, and H. J. Wilke. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur. Spine J. 24:1882–1892, 2015.

    Article  Google Scholar 

  35. Wawrose R. A., F. E. Howington, C. M. LeVasseur, C. N. Smith, B. K. Couch, J. D. Shaw, W. F. Donaldson, J. Y. Lee, C. G. Patterson, W. J. Anderst and K. M. Bell. Assessing the biofidelity of in vitro biomechanical testing of the human cervical spine. J Orthop Res 2020.

  36. Winter, D. A. Biomechanics and motor control of human movement (4th Edition). Hoboken: Wiley, 2009.

    Book  Google Scholar 

  37. Wu, G., S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid, and I. Stokes. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine International Society of Biomechanics. J. Biomech. 35:543–548, 2002.

    Article  Google Scholar 

  38. Yukawa Y., F. Kato, K. Suda, M. Yamagata and T. Ueta. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: Radiographic data from over 1,200 asymptomatic subjects. Eur. Spine J 21: 1492–1498, 2012.

Download references

Acknowledgements

This work was supported by NIH Grant #R01AR069543 and R03-AR056265.

Conflict of interest

Adam Kanter receives royalties from ZimmerBiomet and NuVasive. David Okonkwo receives royalties from ZimmerBiomet and NuVasive.

Funding

Funding was provided by National Institute of Arthritis and Musculoskeletal and Skin Diseases (Grant Numbers R01AR069543, R03-AR056265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarissa M. LeVasseur.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeVasseur, C.M., Pitcairn, S.W., Okonkwo, D.O. et al. In Vivo Changes in Dynamic Adjacent Segment Motion 1 Year After One and Two-Level Cervical Arthrodesis. Ann Biomed Eng 50, 871–881 (2022). https://doi.org/10.1007/s10439-022-02964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02964-7

Keywords

Navigation